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a b s t r a c t

Homogeneous sliding-mode-based differentiators (HD) are known to provide for the high-accuracy
robust estimation of derivatives in the presence of sampling noises and discrete measurements, provided
that the differentiator dynamics evolve in continuous time. The popular one-step Euler discrete-time
implementation is proved to cause differentiation accuracy deterioration, if the differentiation order
exceeds 1. A novel discrete-time realization of the HD is proposed, which preserves the ultimate accuracy
of the continuous-time HD also with discrete measurements.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Sliding-modes (SMs) are used to control uncertain systems
by keeping some functions (sliding variables) at zero due to
high-frequency control switching. SMs are established in finite
time, are accurate and robust (Edwards & Spurgeon, 1998; Utkin,
1992). Possible dangerous vibrations (chattering effect) constitute
their main drawback (Bartolini, 1989; Edwards & Spurgeon, 1998;
Fridman, 2003; Utkin, 1992).

Standard SMs (Edwards & Spurgeon, 1998; Utkin, 1992) re-
quire the sliding-variable relative degree to be 1. High-order slid-
ing modes (HOSMs) (Bartolini, Pisano, Punta, & Usai, 2003; Levant,
1993, 1998, 2003, 2005a, 2010; Plestan, Glumineau, & Laghrouche,
2008; Shtessel & Shkolnikov, 2003) remove this restriction,
placing the switching in the higher sliding-variable derivatives.
Artificially increasing the relative degree one can remove the high-
energy chattering (Bartolini, Pisano et al., 2003; Levant, 2010; Sht-
essel & Shkolnikov, 2003). Their high accuracy is due to the local
homogeneity features (Levant, 2005a).

One of the main applications of sliding-mode control is the ro-
bust finite-time-exact differentiation and observation (Bartolini,
Pisano, &Usai, 2000; Bejarano& Fridman, 2010; Kobayashi, Suzuki,
& Furuta, 2007; Levant, 1998, 2003; Shtessel & Shkolnikov, 2003;
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Utkin, 1992; Yu & Xu, 1996). HOSM-based homogeneous differen-
tiator (HD) (Levant, 2003) estimates n derivatives of a signal, pro-
vided the absolute value of its (n + 1)th derivative has a known
bound. Contrary to the popular linear (Atassi & Khalil, 2000) and
nonlinear (Wang, Chen, & Yang, 2007) high-gain observers, having
been robust with respect to noises, HDs also produce exact finite-
time derivative estimations in the absence of noises. Such differ-
entiators have found a lot of theoretical and practical applications
(Barbot, Saadaoui, Djemai, & Manamanni, 2007; Bartolini, Dami-
ano et al., 2003; Bartolini, Pisano et al., 2003; Defoort, Floquet,
Kokosy, & Perruquetti, 2009; Imine, Fridman, Shraim, & Djemai,
2011; Iqbal, Bhatti, Ayubi, & Khan, 2011; Rabhi, M’Sirdi, Naamane,
& Jaballah, 2010; Shtessel & Shkolnikov, 2003; Su, Muller, & Zheng,
2007).

The HD accuracy originates from the homogeneity of the
error dynamics (Levant, 2003). It is asymptotically optimal in
the presence of infinitesimal input noises (Levant, 1998), and the
accuracy of its ith derivative is of the order τ n−i+1, with the
sampling interval τ , if the noise is absent.

The recent HD modifications (for example Angulo, Moreno, &
Fridman, 2013, Cruz-Zavala, Moreno, & Fridman, 2012) contain
additional higher order terms and feature faster convergence. The
asymptotic accuracy is the same (Angulo, Moreno, & Fridman,
2012), if the local homogeneous error dynamics is preserved. It
is usually worsened, if the local homogeneity is lost (Efimov &
Fridman, 2011).

The above features were proved under the assumption that
the system evolves in continuous time between the sampling
time instants. Unfortunately, in practice the differentiator is a
hybrid computer-based discrete dynamic system with a sampled
continuous-time input. It obviously requires special study and
design.
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A natural approach is to make the discrete-time HD (Levant,
2003) emulate the corresponding continuous-time HD. Since the
system is discontinuous, the Euler method is taken with the
integration step much less than the sampling period, which
makes the integration step choice difficult. Hence, only one Euler
integration step is usually applied at each sampling interval. The
corresponding asymptotic accuracy is calculated in this paper for
the cases of constant and variable sampling intervals. In particular,
the accuracy is proved to be proportional to the sampling interval
in the first case, whereas it is worse in the second case. Thus, the
high accuracy of the continuous-time HD (Levant, 2003) is lost, if
the HD order is higher than 1.

We propose a novel discretization scheme of the differentiators
(Levant, 2003). Terms of higher-order with respect to the sampling
intervals are added to the original Euler integration scheme. Simi-
lar terms are notably introduced in Barbot, Monaco, and Normand-
Cyrot (1996) for the proper analysis of discrete dynamics. The
proposed scheme preserves the computational simplicity of the
one-step Euler scheme and provides for the homogeneous discrete
error dynamics. Thus, the novel scheme restores the asymptotic
accuracy of its continuous-time counterpart. Simulation demon-
strates the calculated accuracies and the advantages of the pro-
posed scheme.

Notation
A sum or multiplication of two sets is understood in the

Minkowski sense, e.g., AB = {ab| a ∈ A, b ∈ B}. d(x, A) is the
Euclidean distance from x ∈ Rm to A ⊂ Rm, d(x, A) = inf{∥x− a∥ |

a ∈ A}. Following Filippov (1988), Aε
= {x ∈ Rm

| d(x, A) ≤ ε};
co(A) is the convex closure of A. Denote f (A) = {f (x) | x ∈ A}, and
F(A) =


x∈A F(x) for any function f and set-valued function F .

The distance dHs(A, B) between non-empty bounded sets A, B
is taken in the Hausdorff metric, dHs(A, B) = max


supa∈A d(a, B),

supb∈B d(b, A)

.

A set-valued function F(x) ⊂ Rn, x ∈ Rm, is called continuous,
if limx→y dHs(F(x), F(y)) = 0, and upper-semicontinuous, if
limx→y (sup{d(z, F(y)) | z ∈ F(x)}) = 0.

Let pi = deg xi, pi > 0, be homogeneous degrees (weights)
of the coordinates x1, . . . , xm. Then ∥x∥h =


|x1|p/p1 + · · · +

|xn|p/pm
1/p

is called the homogeneous norm, p ≥ max{pi | i =

1, 2, . . . ,m}.

2. Preliminaries: HOSM-based differentiation and discretiza-
tion problem

Themain idea of the differentiation based on controlmethods is
to construct a dynamic system, tracking an input function with no
knowledge of its derivatives. Let the input be f (t) = f0(t) + η(t),
f : R → R, where η(t) is a Lebesgue-measurable bounded noise,
|η| ≤ ε, ε ≥ 0 is unknown. The function f0(t) is an n-times
differentiable unknown function to be restored together with its
n derivatives. The last derivative f (n)

0 is known to have a Lipschitz
constant L > 0, which means that f (n+1)

0 (t) ∈ [−L, L] almost
everywhere.

Note that the considered noise restrictions actually imply that
the ‘‘worst-case’’ bounded noises are considered. That approach
significantly differs from stochastic noise restrictions, or the
requirement that the noises be ‘‘highly fluctuating’’ functions
(Fliess, Join, & Sira-Ramírez, 2008) with infinitesimally-small
integrals over any finite time interval.

A general differentiator mostly has the form

żi = ϕi(z0 − f ) + zi+1, i = 0, 1, . . . , n − 1,
żn = ϕn(z0 − f ),

(1)

whereϕi is a scalar function of scalar argument (Angulo et al., 2013;
Atassi & Khalil, 2000; Cruz-Zavala et al., 2012; Levant, 2003). The
system is understood in the Filippov sense (Filippov, 1988) to allow
discontinuities of ϕi. Subtracting f (i+1)

0 from both sides, denoting
σi = zi − f (i)

0 and using f (n+1)
0 (t) ∈ [−L, L], with η = 0 obtain

σ̇i = ϕi(σ0) + σi+1, i = 0, 1, . . . , n − 1,
σ̇n ∈ ϕn(σ0) + [−L, L],

(2)

which is a differential inclusion in the error space σ0, σ1, . . . , σn.
Here and further, for notational simplicity, the equality is
considered as an inclusion with the corresponding set having only
one element. Solutions of a differential inclusion are defined as
absolutely continuous functions satisfying the inclusion almost
everywhere.

Inclusion (2) becomes homogeneous and finite-time-stable
with properly chosen functions ϕi. The homogeneity means that
some positive number (called the weight or the homogeneity
degree Bacciotti & Rosier, 2005) is assigned to each coordinate σi,
deg σi = mi, mi > 0. Also the time t gets its weight deg t =

p (called the minus homogeneity degree of the inclusion Levant,
2005a), which means that the transformation

(t, σ0, σ1, . . . , σn) → (κpt, κm0σ0, κ
m1σ1, . . . , κ

mnσn) (3)

preserves the trajectories of (2) with any positive κ . Recall that
a function of σ0, σ1, . . . , σn is said to have the homogeneity
degree (weight) q, if the same transformation of the arguments is
equivalent to the multiplication of the function by κq.

Since (2) is finite-time stable, the inclusion homogeneity degree
is to be negative (Levant, 2005a). It is easy to see that all weights
can be proportionally changed, thus in the following assume that
the homogeneity degree is −1, i.e., deg t = 1. Due to the segment
present in the last nth equation of (2) the only possible weight of
σ̇n is 0, thus deg σn = 1, and deg σi = n − i + 1, i = 0, . . . , n
(Levant, 2005a).

The recursive form of the nth-order homogeneous HOSM
differentiator (Levant, 2003) is

ż0 = −λ̃nL
1

n+1 |z0 − f0|
n

n+1 sign(z0 − f0) + z1,

ż1 = −λ̃n−1L
1
n |z1 − ż0|

n−1
n sign(z1 − ż0) + z2,

. . .

żn = −λ̃0L sign(zn − żn−1).

(4)

Here zi, i = 0, 1, . . . , n, is the estimation of f (i)
0 , and parameters λ̃i

of differentiator (4) are chosen in advance for each n. An infinite
sequence of parameters λ̃i can be built, which is valid for all n
(Levant, 2003). In particular, one can choose λ̃0 = 1.1, λ̃1 =

1.5, λ̃2 = 2, λ̃3 = 3, λ̃4 = 5, λ̃5 = 8 (Levant, 2005b), which
correspond to the differentiators of the order n, n ≤ 5.

In the absence of noises the equalities zi = f (i)
0 are established

in finite time. In the presence of a sampling noisewith themaximal
magnitude ε the accuracy |zi − f (i)

0 | = O(εi/(n+1)) is obtained, and
these asymptotics cannot be improved (Levant, 2003).

Extracting żi from (4) obtain the standard form (1) with

ϕi(z0 − f0) = −λn−iL
i+1
n+1 |z0 − f0|

n−i
n+1 sign(z0 − f0), (5)

and the new coefficients λ0, λ1, . . . , λk > 0, calculated from (4).
That is,

ż0 = −λnL
1

n+1 |z0 − f0|
n

n+1 sign(z0 − f0) + z1,

ż1 = −λn−1L
2

n+1 |z0 − f0|
n−1
n+1 sign(z0 − f0) + z2,

. . .

żn = −λ0L sign(z0 − f0),

(6)
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