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a b s t r a c t

This paper presents a probabilistic model validation methodology for nonlinear systems in time-domain.
The proposed formulation is simple, intuitive, and accounts both deterministic and stochastic nonlinear
systemswith parametric and nonparametric uncertainties. Instead of hard invalidationmethods available
in the literature, a relaxed notion of validation in probability is introduced. To guarantee provably correct
inference, algorithm for constructing probabilistically robust validation certificate is given along with
computational complexities. Several examples are worked out to illustrate its use.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

A model serves as a mathematical abstraction of the physical
system, providing a framework for system analysis and controller
synthesis. Since such mathematical representations are based on
assumptions specific to the process being modeled, it is important
to quantify the reliability towhich themodel is consistent with the
physical observations. Model quality assessment is imperative for
applications where the model needs to be used for prediction (e.g.
weather forecasting, stockmarket) or safety-critical control design
(e.g. aerospace, nuclear, systems biology) purposes.

Here it is important to realize that amodel can only be validated
against experimental observations, not against another model.
Thus amodel validation problem can be stated as: given a candidate
model and experimentally observedmeasurements of the physical sys-
tem, how well does the model replicate the experimental measure-
ments? It has been argued in the literature (Poolla, Khargonekar,
Tikku, Krause, & Nagpal, 1994; Popper, 2002; Prajna, 2006; Smith
&Doyle, 1992) that the term ‘model validation’ is amisnomer since
it would take infinite number of experimental observations to do
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so. Hence the term ‘model invalidation’ or ‘falsification’ (Brugarolas
& Safonov, 2002) is preferred. In this paper, instead of hard inval-
idation, we will consider the validation/invalidation problem in a
probabilistically relaxed sense.

1.1. Related literature

Broadly speaking, there have been three distinct frameworks
in which the model validation problem has been attempted till
now. One is a discrete formulation in temporal logic framework
(Baier & Katoen, 2008) which has been extended to account proba-
bilistic models (Baier & Katoen, 2008; Ciesinski & Größer, 2004).
Second is the H∞ control framework where time-domain (Chen
& Wang, 1996; Poolla et al., 1994; Smith & Dullerud, 1996), fre-
quency domain (Smith & Doyle, 1992; Wahlberg & Ljung, 1992)
and mixed domain (Xu, Ren, Gu, & Chen, 1999) model validation
methods have been studied assuming structured norm-bounded
uncertainty in linear dynamics setting. The third framework in-
volves deductive inference based on barrier certificates (Prajna,
2006) which was shown to encompass a large class of nonlin-
ear models including differential–algebraic equations (Campbell,
1980), dynamic uncertainties described by integral quadratic con-
straints (Megretski & Rantzer, 1997), stochastic (Øksendal, 2003)
and hybrid dynamics (van der Schaft & Schumacher, 1999).

In statistical setting, model validation has been addressed
from system identification perspective (Ljung, 1999; Ljung & Guo,
1997) where the main theme is to validate an identified nomi-
nal model through correlation analysis of the residuals. A polyno-
mial chaos framework has also been proposed (Ghanem, Doostan,
& Red-Horse, 2008) for model validation. Gevers, Bombois, Co-
drons, Scorletti, and Anderson (2003) have connected the robust
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control framework with prediction error based identification for
frequency-domain validation of linear systems. In another vein, us-
ing Bayesian conditioning, Lee and Poolla (1996) showed that for
parametric uncertainty models, the statistical validation problem
may be reduced to the computation of relative weighted volumes
of convex sets. However, for nonparametric models: ‘‘the situation
is significantly more complicated’’ (Lee & Poolla, 1996) and to the
best of our knowledge, has not been addressed in the literature.
Recently, in the spirit of weak stochastic realization problem (van
Schuppen, 1989), Ugrinovskii (2009) investigated the conditions
for which the output of a stochastic nonlinear system can be re-
alized through perturbation of a nominal stochastic linear system.

In practice, one often encounters the situationwhere amodel is
either proposed from physics-based reasoning or a reduced order
model is derived for computational convenience. In either case, the
model can be linear or nonlinear, continuous or discrete-time, and
in general, it is not possible to make any a priori assumption about
the noise. Given the experimental data and such a candidatemodel
for the physical process, our task is to answer: ‘‘to what extent, the
proposed model is valid?’’ In addition to quantify such degree of
validation, one must also be able to demonstrate that the answer
is provably correct in the face of uncertainty. This brings forth the
notion of probabilistically robust model validation. In this paper,
we will show how to construct such a robust validation certificate,
guaranteeing the performance of probabilistic model validation
algorithm.

1.2. Contributions of this paper

With respect to the literature, the contributions of this paper
are as follows.
(1) Instead of interval-valued structured uncertainty (as in H∞

control framework) or moment based uncertainty (as in para-
metric statistics framework), this paper deals with model
validation in the sense of nonparametric statistics. Uncertain-
ties in the model are quantified in terms of the probability
density functions (PDFs) of the associated random variables.
We argue that such a formulation offers several advantages.
Firstly, we show that model uncertainties in the parameters,
initial states and input disturbance, can be propagated accu-
rately by spatio-temporally evolving the joint state and out-
put PDFs. Since experimental data usually come in the form of
histograms, it is a more natural quantification of uncertainty
than specifying sets (Prajna, 2006) to which the trajectories
are contained at each instant of time. However, if needed, such
sets can be recovered from the supports of the instantaneous
PDFs. Secondly, as we will see in Section 4.4, instead of sim-
ply invalidating a model, our methodology allows to estimate
the probability that a proposed model is valid or invalid. This
can help to decide which specific aspects of the model need
further refinement. Hard invalidation methods do not cater
such constructive information. Thirdly, the framework canhan-
dle both discrete-time and continuous-time nonlinear mod-
els which need not be polynomial. Previous work like (Prajna,
2006) dealt with semialgebraic nonlinearities and relied on the
sum of squares (SOS) decomposition (Parrilo, 2000) for com-
putational tractability. From an implementation point of view,
the approach presented in this paper does not suffer from such
conservatism.

(2) Due to the uncertainties in initial conditions, parameters, and
process noise, one needs to compare the output ensembles
instead of comparing the individual output realizations. This
requires a metric to quantify closeness between the experi-
mental data and the model, in the sense of distribution. We
propose Wasserstein distance to compare the output PDFs and
argue why commonly used information-theoretic notions like
Kullback–Leibler divergencemaynot be appropriate for this pur-
pose.

(3) We show that the uncertainty propagation through continu-
ous or discrete-time dynamics can be done via numerically
efficient meshless algorithms, even when the model is high-
dimensional and strongly nonlinear.Moreover,we outline how
to compute the Wasserstein distance in such settings. Further,
bringing together ideas from the analysis of randomized algo-
rithms, we outline how sample-complexity bounds can be de-
rived for robust validation inference.

The paper is organized as follows. In Section 2, we describe the
problem setup. Then we expound on two main steps of our vali-
dation framework, viz. uncertainty propagation, and distributional
comparison in Sections 3 and 4, respectively. We provide numer-
ical examples in Section 5, to illustrate the ideas presented in this
paper, followed by conclusions in Section 6.

Notation

We use the superscript ⊤ to denote matrix transpose, ⊗ to de-
note Kronecker product, and the symbol ∧ to denote a minimum
of two real numbers. The notation rFs (a1, . . . , ar; b1, . . . , bs; x)
stands for generalized hypergeometric function. The symbols
N (., .), and U (.) are used for normal and uniform PDFs, respec-
tively.We use the notation ξ0 (.) to denote the joint PDF over initial
states and parameters. ξ (., t) andξ (., t) denote joint PDFs over
instantaneous states and parameters, for the true and model dy-
namics, respectively. Similarly, η (., t) andη (., t), respectively de-
note joint PDFs over output spaces y andy at time t , for the true
and model dynamics. The symbolx is used to denote the extended
state vector obtained by augmenting the state (x) and parameter
(p) vectors. We use χ to denote indicator function and # to denote
cardinality. Unless stated otherwise, δ (.) stands forDirac delta. The
symbol Iℓ denotes the ℓ-by-ℓ identity matrix, ∇x denotes gradient
operator with respect to vector x, vec (·) stands for the vectoriza-
tion operator, and ∥ · ∥F denotes the Frobenius norm. tr (·) and
det (·) stand for trace and determinant of a matrix. The abbrevia-
tions a.s. and i.p. refer to convergence in almost sure and in probabil-
ity sense. The shorthand ∂α means partial derivativewith respect to
variable α, supp (·) denotes support of a function, and erf(·) stands
for error function.

2. Problem setup

2.1. Intuitive idea

The proposed framework is based on the evolution of densities
in the output space, instead of evolution of individual trajectories,
as in the Lyapunov framework. Intuitively, characteristics of the
input to output mapping is revealed by the growth or depletion
of trajectory concentrations in the output space. Growth in
concentration, or increased density, defines the regions where the
trajectories accumulate. This corresponds to the regions with slow
time scale dynamics or time invariance. Similarly, depletion of
concentration in a set implies fast time scale dynamics or unstable
manifold. We refer the readers to Lasota and Mackey (1994) for an
introduction to the analysis of dynamical systems using trajectory
densities. This idea of comparing dynamical systems based on
density functions, have been presented before by Sun and Mehta
(2010) in the context of filtering, and by Georgiou (2007) in the
context of matching power spectral densities.

2.1.1. Proposed approach
Given the experimental measurements of the physical system

in the form of a time-varying distribution (such as histograms), we
propose to compare the shape or concentration profile of this mea-
sured output density, with that predicted by the model. At every
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