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Computational framework for optimal control of hybrid systems with a partitioned state space is pre-
sented. It is shown that necessary conditions for optimality for a discrete-time dynamic system can be
solved concurrently for various boundary conditions, according to the recent development of discrete-
time Hamilton-Jacobi theory. This unique property is utilized to construct computationally efficient
numerical optimization of hybrid systems where discrete switching dynamics occurs at the boundary

between partitions of the configuration space. A benchmark example shows that the proposed approach
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has substantial computational advantages compared with the existing ones.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control systems based on Hamiltonian mechanics have
been studied (Fernandes, 1999; Popescu, 1997). This approach
exploits the geometric structures of optimal feedback control prob-
lems thoroughly, by utilizing the rich characteristics of Hamilto-
nian systems (Marsden & Ratiu, 1999). In particular, the recent
work in Guibout and Scheeres (2006), Park, Scheeres, Guibout,
and Bloch (2008) and Park, Guibout, and Scheeres (2006) provides
both unique theoretical insights in solving optimal feedback con-
trol problems by using generating functions. It is shown that the
two-point boundary value problem corresponding to necessary
conditions for optimality can be solved by simple algebraic manip-
ulations of the generating functions.

Computational geometric mechanics have been studied to de-
velop numerical integrators that preserve the underlying physical
properties of a dynamic system. For example, discrete-time Eu-
ler-Lagrange equations, referred to as variational integrators, are
developed according to discrete Hamilton’s variational principle
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(Marsden & West, 2001; Moser & Veselov, 1991). They are also ex-
tended to obtain discrete-time Hamiltonian systems (Lall & West,
2006; Leok & Zhang, 2011), and discrete-time Hamilton-Jacobi
theory (Ohsawa, Bloch, & Leok, 2011).

Numerical flow of discrete-time mechanical systems naturally
preserves their fundamental properties such as invariants, symme-
tries, and symplecticities (Hairer, Lubich, & Wanner, 2000). These
structure-preserving properties play an important role in quali-
tatively accurate computation of long-term dynamics. In particu-
lar, the desirable numerical properties of discrete-time mechanical
systems have been successfully adopted into optimization prob-
lems (Junge, Marsden, & Ober-Blobaum, 2005; Lee, Leok, & Mc-
Clamroch, 2009). As the numerical solutions of discrete-time
mechanics are more robust and faithful, the iteration process of
optimization are free of artificial numerical dissipations caused by
conventional integrators.

Optimal control of a general class of hybrid systems has at-
tracted a considerable attention. When finding optimal trajectories
for hybrid systems, the task of finding an optimal discrete switch-
ing sequence often leads to combinatorial complexities. For a class
of hybrid systems defined on a partitioned state space, where
switchings between different dynamical regimes occur as the con-
tinuous state of the system reaches a switching surface between
partitions, the location of optimal switching points naturally de-
termines the corresponding optimal switching sequence, thereby
eliminating the need to solve a combinatorial optimization prob-
lem separately (Passenberg, Sobotka, Stursberg, Buss, & Caines,
2010). In this hierarchical approach, optimal switching points in
the boundary between partitions and switching times are searched
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over the solutions of optimal control problems within each par-
tition. This requires solving boundary value problems repeatedly,
and the corresponding computational load could be excessive.

In this paper, we present a computational framework to solve
optimal control of hybrid systems with a partitioned state space ef-
ficiently based on the recent development of discrete-time Hamil-
ton-Jacobi theory. The continuous-time dynamics of each partition
is represented by discrete-time mechanical systems with respect
to a discrete-time sequence.

First, optimal feedback control problem for a discrete-time sys-
tem defined at each partition is considered. Discrete-time optimal-
ity conditions are obtained from discrete Pontryagin’'s principle,
and the corresponding two point boundary value problems are
solved via discrete-time Hamilton-Jacobi theory uniformly for sev-
eral types of boundary conditions. This is useful to compute opti-
mal feedback controls repeatedly for varying boundary conditions.
Second, this desirable computational feature is applied to solve an
optimal feedback control problem of hybrid systems with parti-
tioned state spaces by using their hierarchical structures between
the discrete-time optimal trajectories at a particular partition, and
the discrete switching dynamics that occur at the boundary be-
tween partitions.

The proposed approach is based on combining the distinctive
approaches in computational mechanics, optimization, Hamilto-
nian dynamics, and hybrid systems in a creative and productive
manner. The main contributions of this paper are (i) constructing
a new discrete-time optimal feedback control strategy that pro-
vides optimal trajectories uniformly for varying boundary condi-
tions, and (ii) presenting highly efficient computational scheme
for optimal control of hybrid systems that is applicable to opti-
mal feedback control. The proposed method is developed for hy-
brid systems with a partitioned state space, but it can be readily
generalized to other hybrid systems where switching dynamics
autonomously. To the author’s best knowledge, there has been lim-
ited study on optimal feedback control framework for hybrid sys-
tems. The preliminary results of this paper were published in Lee
(2012), which deals with the formulation of discrete-time Hamil-
ton-Jacobi theory to construct optimal feedback control. This pa-
per is focused on constructing computationally efficient tools for
optimal control of hybrid systems, and extensive benchmark re-
sult is included to clearly illustrate the substantial computational
advantages of the presented approaches.

2. Discrete-time Hamiltonian mechanics

Discrete-time Hamiltonian mechanics is formulated by dis-
cretizing Hamilton’s phase space variational principle (Lall & West,
2006; Leok & Zhang, 2011; Ohsawa et al., 2011). In this section,
discrete-time Hamiltonian mechanics and Hamilton-Jacobi theory
are summarized, and they are extended to be utilized in the subse-
quent development of optimal controls.

2.1. Discrete-time Hamiltonian system

Consider a Hamiltonian system evolving on a configuration
space Q, where its Hamiltonian is given by H(q,p) : T"Q — R,
where T*Q denotes the cotangent bundle (Marsden & Ratiu, 1999).
Let {(qx, pk)}ﬁ’:0 be a discrete curve in T*Q, where the state vari-
able and the momentum at the kth time step are denoted by g, and
Dk, respectively. A discrete-time Hamiltonian is an approximation
to the type Il generating function for the canonical transformation
between (qx, pr) and (qy+1, P+1), given by

Hq(qr, Pr1) = Pisr - q(tks1)
k41
- / p(6) - 4() — H(g(t). p(0)) dt.
e

where q(t), p(t) are solution to the continuous-time Hamilton’s
equation satisfying boundary conditions q(ty) = gk, and p(tyy+1) =
Pi+1-
For given {(qy, Pk)}g:w we define 64 as

N-1
G4 =DN -GN — Z[Pk“ “Qi+1 — Ha(qk, Pr+1)]-

k=1
The discrete phase space variational principle states that §&; = 0
over discrete curves with fixed boundary conditions (qq, py). This
yields the discrete-time Hamilton’s equations:

Qk+1 = DaHy(qx, Pr+1)s Px = D1Ha(qk, Pr+1), (1

where D; denotes the derivative of a function with respect to its ith
argument (Leok & Zhang, 2011).

2.2. Discrete-time Hamilton-Jacobi theory

From (1), discrete-time Hamiltonian provides the relation be-
tween state variables and momenta over a single time step. This
can be extended to the transformation from the current state and
momentum (g, px) to their terminal values (qy, py) over an arbi-
trary number of time steps, namely N — k. Canonical transforma-
tion is a change of coordinate that preserves the form of Hamilton’s
equations, and any canonical transformation can be described by
four types of generating function, depending on the choice of inde-
pendent variables (Marsden & West, 2001). As the transformation
from (qy, pr) to (gn, pn) is also a canonical transformation, there
exist corresponding generating functions as summarized below.

Proposition 1 (Lee, 2012). Consider a discrete flow {(q, pk)}’,:’:O sat-
isfying the discrete Hamilton’s equations (1). Define four types of gen-
erating functions in terms of the two independent variables chosen
from the boundary condition (qy, px) and (qn, pn) as:

N—1
Gi(qks an) = — Y _[Pis1 - Gix1 — Ha(Gi, Pisn)], (2)
i=k
G2(qk, pn) = DN - N + G1(Gk, qn),s (3)
G3(Pr, n) = =Pk - Gk + G1(qk, qn), (4)
Ga(Pk, PN) = DN - An — Pk - Gk + G1(qk, qn), (5)

where the dependency of generating functions on t, and ty is not ex-
plicitly stated for simplicity. For example G1(qy, qn) is a shorthand for
G1(k, N; qx, qn), which is the type I generating function for qy at t
and qy at ty. They satisfy the following equations:

Pk = D1G1(qk, qn), —pn = D2G1(qk, qn), (6)
Pk = D1G2(qk, Pn), qn = D2Ga(qk, Pn), (7)
—qr = D1G3(p, qn)» —pn = D2G3(py, qn), (8)
—Qqr = D1G4(p, Pn), qn = D2Ga(pr, pn), 9

which provide algebraic relations between (qy, pr) and (qn, pn)-

Proposition 2 (Lee, 2012). The generating functions defined at
Proposition 1 satisfy the following discrete Hamilton-Jacobi equa-
tions:

G1(qk=1, an) = G1(qr, qn) — D1G1(Gk, qn) - Gk

+ Hy(qk—1, D1G1(qx, qn)), (10)
G2(qk—1,Pn) = G2(qk, Pn) — D1Ga(qx, PN) - G

+ Hy(qk—1, D1G2(qx, pn))- (11)
G3(Pk-1,qn) = G3(Dk, qn) — Pk—1 - D1G3(Pk—1, qn)

~+ Hy(=D1G3(px, Gn), Pr)» (12)
G4(Pr—1,PN) = Ga(Pk, PN) + Pi—1 - D1Ga(pr—1, PN)

+ Hg(=D1G4(Pr—1, Pn)s Pro)- (13)



Download English Version:

https://daneshyari.com/en/article/695730

Download Persian Version:

https://daneshyari.com/article/695730

Daneshyari.com


https://daneshyari.com/en/article/695730
https://daneshyari.com/article/695730
https://daneshyari.com

