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a b s t r a c t

Computational framework for optimal control of hybrid systems with a partitioned state space is pre-
sented. It is shown that necessary conditions for optimality for a discrete-time dynamic system can be
solved concurrently for various boundary conditions, according to the recent development of discrete-
time Hamilton–Jacobi theory. This unique property is utilized to construct computationally efficient
numerical optimization of hybrid systems where discrete switching dynamics occurs at the boundary
between partitions of the configuration space. A benchmark example shows that the proposed approach
has substantial computational advantages compared with the existing ones.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Optimal control systems based on Hamiltonianmechanics have
been studied (Fernandes, 1999; Popescu, 1997). This approach
exploits the geometric structures of optimal feedback control prob-
lems thoroughly, by utilizing the rich characteristics of Hamilto-
nian systems (Marsden & Ratiu, 1999). In particular, the recent
work in Guibout and Scheeres (2006), Park, Scheeres, Guibout,
and Bloch (2008) and Park, Guibout, and Scheeres (2006) provides
both unique theoretical insights in solving optimal feedback con-
trol problems by using generating functions. It is shown that the
two-point boundary value problem corresponding to necessary
conditions for optimality can be solved by simple algebraic manip-
ulations of the generating functions.

Computational geometric mechanics have been studied to de-
velop numerical integrators that preserve the underlying physical
properties of a dynamic system. For example, discrete-time Eu-
ler–Lagrange equations, referred to as variational integrators, are
developed according to discrete Hamilton’s variational principle
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(Marsden &West, 2001; Moser & Veselov, 1991). They are also ex-
tended to obtain discrete-time Hamiltonian systems (Lall & West,
2006; Leok & Zhang, 2011), and discrete-time Hamilton–Jacobi
theory (Ohsawa, Bloch, & Leok, 2011).

Numerical flow of discrete-time mechanical systems naturally
preserves their fundamental properties such as invariants, symme-
tries, and symplecticities (Hairer, Lubich, & Wanner, 2000). These
structure-preserving properties play an important role in quali-
tatively accurate computation of long-term dynamics. In particu-
lar, the desirable numerical properties of discrete-timemechanical
systems have been successfully adopted into optimization prob-
lems (Junge, Marsden, & Ober-Blöbaum, 2005; Lee, Leok, & Mc-
Clamroch, 2009). As the numerical solutions of discrete-time
mechanics are more robust and faithful, the iteration process of
optimization are free of artificial numerical dissipations caused by
conventional integrators.

Optimal control of a general class of hybrid systems has at-
tracted a considerable attention.When finding optimal trajectories
for hybrid systems, the task of finding an optimal discrete switch-
ing sequence often leads to combinatorial complexities. For a class
of hybrid systems defined on a partitioned state space, where
switchings between different dynamical regimes occur as the con-
tinuous state of the system reaches a switching surface between
partitions, the location of optimal switching points naturally de-
termines the corresponding optimal switching sequence, thereby
eliminating the need to solve a combinatorial optimization prob-
lem separately (Passenberg, Sobotka, Stursberg, Buss, & Caines,
2010). In this hierarchical approach, optimal switching points in
the boundary between partitions and switching times are searched
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over the solutions of optimal control problems within each par-
tition. This requires solving boundary value problems repeatedly,
and the corresponding computational load could be excessive.

In this paper, we present a computational framework to solve
optimal control of hybrid systemswith a partitioned state space ef-
ficiently based on the recent development of discrete-time Hamil-
ton–Jacobi theory. The continuous-time dynamics of each partition
is represented by discrete-time mechanical systems with respect
to a discrete-time sequence.

First, optimal feedback control problem for a discrete-time sys-
tem defined at each partition is considered. Discrete-time optimal-
ity conditions are obtained from discrete Pontryagin’s principle,
and the corresponding two point boundary value problems are
solved via discrete-timeHamilton–Jacobi theory uniformly for sev-
eral types of boundary conditions. This is useful to compute opti-
mal feedback controls repeatedly for varying boundary conditions.
Second, this desirable computational feature is applied to solve an
optimal feedback control problem of hybrid systems with parti-
tioned state spaces by using their hierarchical structures between
the discrete-time optimal trajectories at a particular partition, and
the discrete switching dynamics that occur at the boundary be-
tween partitions.

The proposed approach is based on combining the distinctive
approaches in computational mechanics, optimization, Hamilto-
nian dynamics, and hybrid systems in a creative and productive
manner. The main contributions of this paper are (i) constructing
a new discrete-time optimal feedback control strategy that pro-
vides optimal trajectories uniformly for varying boundary condi-
tions, and (ii) presenting highly efficient computational scheme
for optimal control of hybrid systems that is applicable to opti-
mal feedback control. The proposed method is developed for hy-
brid systems with a partitioned state space, but it can be readily
generalized to other hybrid systems where switching dynamics
autonomously. To the author’s best knowledge, there has been lim-
ited study on optimal feedback control framework for hybrid sys-
tems. The preliminary results of this paper were published in Lee
(2012), which deals with the formulation of discrete-time Hamil-
ton–Jacobi theory to construct optimal feedback control. This pa-
per is focused on constructing computationally efficient tools for
optimal control of hybrid systems, and extensive benchmark re-
sult is included to clearly illustrate the substantial computational
advantages of the presented approaches.

2. Discrete-time Hamiltonian mechanics

Discrete-time Hamiltonian mechanics is formulated by dis-
cretizing Hamilton’s phase space variational principle (Lall &West,
2006; Leok & Zhang, 2011; Ohsawa et al., 2011). In this section,
discrete-time Hamiltonianmechanics and Hamilton–Jacobi theory
are summarized, and they are extended to be utilized in the subse-
quent development of optimal controls.

2.1. Discrete-time Hamiltonian system

Consider a Hamiltonian system evolving on a configuration
space Q, where its Hamiltonian is given by H(q, p) : T∗Q → R,
where T∗Q denotes the cotangent bundle (Marsden & Ratiu, 1999).
Let {(qk, pk)}Nk=0 be a discrete curve in T∗Q, where the state vari-
able and themomentum at the kth time step are denoted by qk and
pk, respectively. A discrete-time Hamiltonian is an approximation
to the type II generating function for the canonical transformation
between (qk, pk) and (qk+1, pk+1), given by

Hd(qk, pk+1) ≈ pk+1 · q(tk+1)

−

 tk+1

tk
p(t) · q̇(t)− H(q(t), p(t)) dt,

where q(t), p(t) are solution to the continuous-time Hamilton’s
equation satisfying boundary conditions q(tk) = qk, and p(tk+1) =

pk+1.
For given {(qk, pk)}Nk=0, we define Gd as

Gd = pN · qN −

N−1
k=1

[pk+1 · qk+1 − Hd(qk, pk+1)].

The discrete phase space variational principle states that δGd = 0
over discrete curves with fixed boundary conditions (q0, pN). This
yields the discrete-time Hamilton’s equations:

qk+1 = D2Hd(qk, pk+1), pk = D1Hd(qk, pk+1), (1)

where Di denotes the derivative of a function with respect to its ith
argument (Leok & Zhang, 2011).

2.2. Discrete-time Hamilton–Jacobi theory

From (1), discrete-time Hamiltonian provides the relation be-
tween state variables and momenta over a single time step. This
can be extended to the transformation from the current state and
momentum (qk, pk) to their terminal values (qN , pN) over an arbi-
trary number of time steps, namely N − k. Canonical transforma-
tion is a change of coordinate that preserves the form of Hamilton’s
equations, and any canonical transformation can be described by
four types of generating function, depending on the choice of inde-
pendent variables (Marsden & West, 2001). As the transformation
from (qk, pk) to (qN , pN) is also a canonical transformation, there
exist corresponding generating functions as summarized below.

Proposition 1 (Lee, 2012). Consider a discrete flow {(qk, pk)}Nk=0 sat-
isfying the discrete Hamilton’s equations (1). Define four types of gen-
erating functions in terms of the two independent variables chosen
from the boundary condition (qk, pk) and (qN , pN) as:

G1(qk, qN) = −

N−1
i=k

[pi+1 · qi+1 − Hd(qi, pi+1)], (2)

G2(qk, pN) = pN · qN + G1(qk, qN), (3)
G3(pk, qN) = −pk · qk + G1(qk, qN), (4)
G4(pk, pN) = pN · qN − pk · qk + G1(qk, qN), (5)

where the dependency of generating functions on tk and tN is not ex-
plicitly stated for simplicity. For example G1(qk, qN) is a shorthand for
G1(k,N; qk, qN), which is the type I generating function for qk at tk
and qN at tN . They satisfy the following equations:

pk = D1G1(qk, qN), −pN = D2G1(qk, qN), (6)
pk = D1G2(qk, pN), qN = D2G2(qk, pN), (7)
−qk = D1G3(pk, qN), −pN = D2G3(pk, qN), (8)
−qk = D1G4(pk, pN), qN = D2G4(pk, pN), (9)

which provide algebraic relations between (qk, pk) and (qN , pN).

Proposition 2 (Lee, 2012). The generating functions defined at
Proposition 1 satisfy the following discrete Hamilton–Jacobi equa-
tions:

G1(qk−1, qN) = G1(qk, qN)− D1G1(qk, qN) · qk
+Hd(qk−1,D1G1(qk, qN)), (10)

G2(qk−1, pN) = G2(qk, pN)− D1G2(qk, pN) · qk
+Hd(qk−1,D1G2(qk, pN)), (11)

G3(pk−1, qN) = G3(pk, qN)− pk−1 · D1G3(pk−1, qN)
+Hd(−D1G3(pk, qN), pk), (12)

G4(pk−1, pN) = G4(pk, pN)+ pk−1 · D1G4(pk−1, pN)
+Hd(−D1G4(pk−1, pN), pk). (13)
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