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a b s t r a c t 

The analysis of saturation-type nonlinearities on the input and the error in the weight update equation 

for LMS adaptation were obtained for a stationary white Gaussian data model in [28] for system iden- 

tification. Here the input signal is modeled by a cyclostationary white Gaussian random process with 

periodically time-varying power. The system parameters vary according to a random-walk. Using the pre- 

vious analysis results, nonlinear recursions are presented for the transient and steady-state weight first 

and second moments that include the effect of the soft limiters. Monte Carlo simulations of the algo- 

rithms provide strong support for the theory. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

An important aspect of adaptive filter performance is the abil- 

ity to track time variations of the underlying signal statistics [1,2] . 

The standard analytical model assumes the input signal is station- 

ary (see e.g. [3–11] ). However, a non-stationary signal model can 

be provided by a random walk model for the optimum weights. 

The form of the mean-square error performance surface remains 

unaltered while the surface moves in the weight space over time. 

This model provides the conditions for the adaptive algorithm to 

track the optimum solution [1] . Alternatively, the input signal can 

be modeled as a cyclostationary process in many practical applica- 

tions [12–14] . In these cases, the form of the performance surface 

is periodic with the same period as the input autocorrelation ma- 

trix [15] . This performance surface deformation affects the adap- 

tive filter convergence and is independent of changes in the opti- 

mum weights. This transient performance surface deformation can 

be modeled by standard analytical models. 

However, it is still desirable to understand the adaptive perfor- 

mance with non-stationary inputs. In particular, adaptive solutions 

have been sought for many application areas involving cyclosta- 

tionary signals [16] . 

The history of the analysis of the stochastic behavior of adaptive 

algorithms for nonstationary inputs is relatively limited. LMS be- 
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havior for cyclostationary inputs was first studied in [17] but only 

for convergence of the mean weights. The special case of pulsed in- 

put power variations was studied in [18,19] for both LMS and NLMS 

algorithms with linear combiner structures. The stochastic behav- 

ior of the LMS and NLMS algorithms for two types of cyclosta- 

tionary white Gaussian inputs was studied in [20,21] . The behavior 

of the Least Mean Fourth (LMF) algorithm with nonstationary in- 

puts has been investigated in [22] . Bershad et al. [23] studied the 

second moment behavior of the adaptive line enhancer/adaptive 

line canceler for a cyclostationary input which consisted of a fixed 

amplitude random phase sine wave plus a white Gaussian pro- 

cess with periodic power variations. The above analyses were ex- 

tended to signed LMS algorithms [24] . Adaptive filtering based on 

the time averaged MSE has been applied to cyclostationary signals 

[25] . None of these works considered the application of nonlinear- 

ities to the error or to the input regressor in the weight update. 

Non-linear effects for the LMS algorithm have been studied for sta- 

tionary inputs [26] . Recently the LMS and NLMS algorithms were 

compared for cyclostationary inputs [27] . Most recently, a unified 

theory for the LMS algorithm with soft limiters [28] has been de- 

veloped for stationary inputs. This paper uses the theory in [28] to 

extend to cyclostationary inputs. 

Adaptive filter analysis for cyclostationary inputs is not easy be- 

cause of the difficulty of modeling the input cyclostationarity in a 

mathematically treatable way. This point is very important for soft 

limited LMS algorithms because of the algorithm non-linearities. 

Thus, relatively simple models are needed to infer algorithm be- 

havior for inputs with time-varying statistics. 
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Fig. 1. Adaptive plant identification. 

This note extends previous statistical analyses of the soft lim- 

ited LMS algorithms [28] with stationary white Gaussian input sig- 

nals in a system identification framework to the cyclostationary 

case. The input cyclostationary signal is modeled by a white Gaus- 

sian random process with periodically time-varying power. These 

models are used to study the adaptive filter performance for input 

signals with fast, moderate or slow sinusoidal and pulsed power 

variations. Simulation results show excellent agreement with the 

theoretically predicted behaviors, confirming the usefulness of the 

analytical model to study the adaptive filter behavior. 

The note is organized as follows. Section 2 defines the problem 

and the statistical assumptions used to solve the problem. Section 

3 extends the general recursions for the mean and second moment 

weight behavior for the soft limited LMS algorithm [28] for the sta- 

tionary case to the cyclostationary case. These recursions are stud- 

ied for soft limiting of both the input and error of the LMS algo- 

rithm for identifying a Markov channel with the two cyclostation- 

ary inputs. Section 4 compares the developed theory with Monte 

Carlo simulations. Section 5 presents the conclusions. Capital let- 

ters denote vectors or matrices, and small letters denote scalar 

variables. 

2. Problem definition and statistical assumptions 

2.1. System identification and the Markov channel model 

This paper will study the system identification model given 

in Fig. 1 . All signals and systems are real. The N -dimensional in- 

put vector to the adaptive filter tap weights is given by X(n ) = 

[ x (n ) , x ( n − 1 ) , . . . . . . x ( n − N + 1 ) ] T . The superscript T means 

transpose. The observation noise n o (n ) is assumed stationary zero- 

mean white Gaussian with variance σ 2 
o and independent of X(n ). 

The standard random walk model [1,2] is used for the unknown 

channel 

H ( n + 1 ) = H ( n ) + Q ( n ) (1) 

where Q(n) is a white Gaussian vector with zero mean and covari- 

ance matrix E[ Q (n ) Q 

T (n ) ] = σ 2 
q I where I is the identity matrix. 

The vector sequence Q(n) is assumed independent of both X(n) and 

n o (n ) . This model is the so-called random walk approximation to 

the first order Markov model [28] . The random walk model (1) is 

not realistic. However, it allows a feasible tracking analysis that 

provides important insights into the ability of the adaptive algo- 

rithm to track channel variations [26] . 

The well-known adaptive filter Independence Theory (IT) as- 

sumes that the adaptive filter weights at time n , W(n) , are statis- 

tically independent of the input vector X(n) [28] . The use of this 

assumption considerably simplifies the stochastic analysis of the 

adaptive filter. The IT assumption has been shown to lead to very 

accurate models in a wide variety of adaptive filter applications. 

The agreement between the theoretical results and Monte Carlo 

simulations in Section 5 supports the application of the IT assump- 

tion for cyclostationary input signals. 

Define the weight deviation vector V (n ) = W (n ) − H(n ) and the 

weight deviation covariance matrix K V V (n) = E [ V (n ) V T (n ) ] . Then 

the mean square deviation ( MSD ) is given by [28] 

MSD ( n ) = E 
[
V 

T ( n ) V ( n ) 
]

= trace [ K V V ( n ) ] (2) 

where trace [ B ] is the trace of the matrix B . The IT assumption is 

needed when evaluating the recursions for the mean weight and 

K V V (n) as will be shown shortly. 

2.2. Nonlinear LMS algorithm 

The conventional LMS adaptive algorithm is given by 

W ( n + 1 ) = W ( n ) + μe ( n ) X ( n ) (3) 

where 

e ( n ) = H 

T ( n ) X ( n ) + n o ( n ) − W 

T ( n ) X ( n ) (4) 

and μ is the step-size. 

The nonlinear LMS adaptive algorithm studied here is given by 

W ( n + 1 ) = W ( n ) + μg 1 [ e ( n ) ] G 2 [ X ( n ) ] (5) 

where G 

T 
2 

[ X(n ) ] = [ g 2 [ x (n ) ] , g 2 [ x ( n − 1 ) ] , . . . , g 2 [ x ( n − N + 1 ) ] ] and 

g 1 [.] and g 2 [ . ] are bounded odd nonlinearities. 

2.3. Cyclostationary input signal model 

A wide sense cyclostationary random process y ( t ) is defined [1- 

p.82] as 

E [ y ( t 1 + T ) ] = E [ y ( t 1 ) ] , E [ y ( t 1 + T ) y ( t 2 + T ) ] = E [ y ( t 1 ) y ( t 2 ) ] 

(6) 

for all t 1 and t 2 and where T is the period. 

It is assumed that the elements of the input vector X(n), 

x(n − k), k = 0,…, N − 1 are samples of a zero-mean white Gaus- 

sian sequence with time-varying variance. Thus, the autocorrela- 

tion matrix R ( n ) is given by 

R ( n ) = E 
[
X ( n ) X 

T ( n ) 
]

= Diag 
[
σ 2 

x ( n ) , σ 2 
x ( n − 1 ) , . . . , σ 2 

x ( n − N + 1 ) 
]

(7) 

where σ 2 
x (n ) is periodic with period T . Hence, X(n) is a discrete 

time wide sense cyclostationary process. Although this model is 

not general, Eq. (7) defines a non-trivial model. It allows the in- 

put to display a simple type of cyclostationarity which can be used 

to model more complex time-varying statistical properties of the 

inputs. Two simple models for σ 2 
x (n ) are considered here: a sinu- 

soidal power time variation 

σ 2 
x (n ) = β(1 + sin ( ω o n )) (8) 

and a pulsed power time variation 

σ 2 
x (n ) = P 1 f or iT < n ≤ iT + αT , 

σ 2 
x (n ) = P 2 f or iT + αT < n ≤ (i + 1) T , 

for 0 < α < 1 and i = 1 , 2 , . . . (9) 

The theory presented here can be extended to other cyclosta- 

tionary power variations in a similar manner. 

The sinusoidal variation model can be used to study the algo- 

rithm behavior for different speeds of input power variation with 

bounded maximum power. The pulsed model can be used to study 

the algorithm behavior for pulsed inputs such as those occurring in 
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