
Automatica 50 (2014) 2077–2083

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

Observability of linear systems with commensurate delays and
unknown inputs✩

Francisco Javier Bejarano a,1, Gang Zheng b

a SEPI, ESIME Ticomán, IPN, Av. San José Ticomán 600, C.P. 07340, Mexico City, Mexico
b Non-A, INRIA - Lille Nord Europe, 40 avenue Halley, Villeneuve d’Ascq 59650, France

a r t i c l e i n f o

Article history:
Received 7 July 2013
Received in revised form
27 January 2014
Accepted 10 April 2014
Available online 20 June 2014

Keywords:
Delay systems
Commensurate delays
Observability
Unknown inputs

a b s t r a c t

This paper investigates the observability analysis for linear time systems whose outputs are affected by
unknown inputs. Three different definitions of observability are proposed. By introducing the Smith form
and comparing the invariant factors, a sufficient condition is deduced for each proposed observability
definition. Three examples are given for the purpose of highlighting the effectiveness of the proposed
approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Time delay systems are widely used to model many concrete
applications, like chemical and biological processes and many
results have been published to treat these kinds of systems
for different aspects (Richard (2003) and Sename (2001)). The
analysis of observation for time delay systems can be dated
back to the 1980s (Lee and Olbrot (1981), Olbrot (1981), Rabah
(1995) and Salamon (1980)). For this issue, different definitions
of observability have been proposed, such as strong observability,
spectral observability and weak observability.

For linear time delay systems, various aspects of the observ-
ability problem have been studied in the literature, using differ-
ent methods such as the functional analytic approach (Bhat &
Koivo, 1976) or the algebraic approach (Brewer, Bunce, and Vleck
(1986), Fliess and Mounier (1998) and Sontag (1976)). For non-
linear time delay systems, by using the theory of non-commutative
rings (Moog, Castro-Linares, Velasco-Villa, & Marque-Martinez,
2000), the observability problem has been studied in Xia, Marquez,

✩ The first author acknowledges the support of IPN SIP project 20141364. The
material in this paper was not presented at any conference. This paper was
recommended for publication in revised form by Associate Editor Akira Kojima
under the direction of Editor Ian R. Petersen.

E-mail addresses: javbejarano@yahoo.com.mx (F.J. Bejarano),
gang.zheng@inria.fr (G. Zheng).
1 Tel.: +52 55 5729 6000x4613; fax: +52 55 5729 6000.

Zagalak, and Moog (2002) for systems with known inputs, and
in Zheng, Barbot, Boutat, Floquet, and Richard (2011) for systems
with unknown inputs. The associated observer for some classes of
time delay systems can be found in Conte, Perdon, and Guidone-
Peroli (2003), Darouach (2006), Fattouh, Sename, and Dion (1999)
Fu, Duan, and Song (2004) and Sename (2001) and the references
therein.

Nonetheless, themajority of the existingworks on observability
analysis are focused on time delay systems whose outputs are not
affected by unknown inputs. However, this situation might exist
in some practical applications and this motivates the work of this
paper. Here, we deal with time delay systems which are linear and
whose delays are commensurable. We consider that delays may
appear in the state, input, and output. The aim is searching for some
conditions allowing for the reconstruction of the entire state vector
using backward, actual, and\or forward output information.

The contributions of this paper are as follows. First, we intro-
duce the Unknown Input Observability (UIO), backward UIO and
forward UIO concepts. For each one of the proposed observabil-
ity definitions, we obtain sufficient conditions that can be verified
by using somematrices depending on the original system parame-
ters. The established condition for the unknown input observabil-
ity turns out to be a generalization of the already known condition
for systems with unknown inputs, but without delays (in that case
such a condition is also a necessary one), and also it is a generaliza-
tion of the known strongly observable condition for linear systems
with commensurable delays, but without unknown inputs. Due to
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the methodology used in the paper, the results may be applied to
systems over polynomial rings.

The following notations will be used: R is the field of real
numbers, R≠0 is the set of nonzero real numbers. The set of
nonnegative integers is denoted by N0. R [δ] is the polynomial
ring over the field R. The Laurent polynomial ring is denoted
as R


δ, δ−1


. Rn [δ] is the R [δ]-module whose elements are the

vectors of dimension n and whose entries are polynomials. By
Rq×s [δ] we denote the set of matrices of dimension q × s, whose
entries are in R [δ]. For f (δ), a polynomial of R [δ], deg f (δ) is the
degree of f (δ). For a matrix M (δ), degM (δ) (the degree of M (δ))
is defined as themaximumdegree of all the entriesmij (δ) ofM (δ).
detM (δ) is the determinant of this matrix, and rank M (δ)means
the rank of the matrix M (δ) over R [δ]. The acronym for greatest
common divisor is gcd.

2. Formulation of the problem and definitions

We will deal with the following class of linear systems with
commensurate delays:

ẋ (t) =

ka
i=0

Aix (t − ih)+

kb
i=0

Biw (t − ih)

y (t) =

kc
i=0

Cix (t − ih)+

kd
i=0

Diw (t − ih)

(1)

where the state vector x (t) ∈ Rn, the system output vector y (t) ∈

Rp, and the unknown input vectorw (t) ∈ Rm, the initial condition
ϕ (t) is a piecewise continuous function ϕ (t) : [−kh, 0] → Rn

(k = max {ka, kb, kc, kd}); thereby x (t) = ϕ (t) on [−kh, 0]. Ai,
Bi, Ci, and Di are matrices of appropriate dimension with entries
in R. By using the delay operator (backward time-shift operator)
δ : x (t) → x (t − h), system (1) may be represented in the
following compact form:

ẋ (t) = A (δ) x (t)+ B (δ)w (t)
y (t) = C (δ) x (t)+ D (δ)w (t) (2)

whereA (δ), B (δ), C (δ), andD (δ) arematrices over the polynomial
ring R [δ], defined as A (δ) :=

ka
i=0 Aiδ

i, B (δ) :=
kb

i=0 Biδ
i,

C (δ) :=
kc

i=0 Ciδ
i, and D (δ) :=

kd
i=0 Diδ

i. As for x (t;ϕ,w), we
mean the solution of the delay differential equation of system (1)
with the initial condition equal to ϕ, and the input vector equal
to w. Analogously, we define y (t;ϕ,w) := C (δ) x (t;ϕ,w) +

D (δ)w (t), that is, to be the system output of (1) when x (t) =

x (t;ϕ,w).
Practically, whatwe search for is to find out conditions allowing

for the estimation of x (t). To tackle the problem in a more formal
way, we use the following observability definitions.

Definition 1 (Unknown Input Observability). System (1) is called
unknown input observable (UIO) on the interval [t1, t2] iff there exist
t ′1 and t ′2 (t ′1 < t ′2) such that, for all inputs w and every initial
condition ϕ,

y (t;ϕ,w) = 0 for all t ∈

t ′1 , t

′

2


implies x (t;ϕ,w) = 0 for t ∈ [t1 , t2] .

Definition 2 (Backward UIO). System (1) is said to be backward UIO
(BUIO) on [t1, t2] iff for each τ ∈ [t1, t2] there exist t ′1 < t ′2 ≤ τ such
that, for all inputsw and every initial condition ϕ,

y (t;ϕ,w) = 0 for all t ∈

t ′1, t

′

2


implies x (τ ;ϕ,w) = 0.

Definition 3 (Forward UIO). System (1) is said to be forward UIO
(FUIO) on [t1, t2] iff for each τ ∈ [t1, t2] there exist t ′2 > t ′1 ≥ τ
such that, for all inputsw and every initial condition ϕ,

y (t;ϕ,w) = 0 for all t ∈

t ′1, t

′

2


implies x (τ ;ϕ,w) = 0.

Remark 1. These definitions are essentially formulated following
the observability definitions given in Kalman, Falb, and Arbib
(1969) for linear systems. Basically, UIO considers the case when
the state vector can be reconstructed using past, actual, and future
values of the system output. As for BUIO, it is related with the case
when only actual and past values of the system output are needed
for the actual state reconstruction. Finally, FUIO defines a property
which theoretically allows for the reconstruction of the actual state
vector using only actual and future values of the system output.

Obviously, either BUIO or FUIO implies UIO. It should be noted
that BUIO and FUIO do not exclude each other. For instance, the
system

ẋ1 = x2, ẋ2 = x1 + δx2; y1 = δx1, y2 = x2

is BUIO on [t1, t1 + h] (t1 ≥ h) since, for each τ ∈ [t1, t1 + h],
y (t) = 0 on [t1 − h, τ ] implies x (τ ) = 0. Moreover, it is FUIO
on [t1, t1 + h], since, y (t) = 0 on [τ , t1 + 2h] implies x (τ ) = 0.

In the next section we will search for sufficient conditions
allowing for the test of the UIO property, which at the same time
provide us with a constructive way to reconstruct x (t) in finite
time.

3. Basic results

The study of the observability for linear systems (without
delays) has been successfully tackled by using geometric methods,
in particular invariant subspaces. For the time delay case such
methods cannot be followed straightforwardly, but still many of
those ideas can be borrowed (see Conte et al. (2003) and Conte,
Perdon, and Moog (2007)). Here we will not follow strictly a
geometric method; however, in its spirit the idea still comes from
the results of geometric methods of standard linear systems, as we
will see below.

Let P (δ) be a matrix of q × s dimension with rank equal to r
(clearly r ≤ min {q, s}). We know that there exists an invertible
matrix T (δ) over R [δ] (representing elementary row operations)
such that P (δ) is put into (column) Hermite form. Thus, we have
that

T (δ) P (δ) =


P1 (δ)

0


where P1 (δ) is of r×s dimension, and rank P1 = r . Also, there exist
two invertible matrices U (δ) and V (δ) over R [δ] (representing
elementary row and column operations, respectively) such that
P (δ) is reduced to its Smith form, i.e.,

U (δ) P (δ) V (δ) =


diag (ψ1 (δ) · · ·ψr (δ)) 0

0 0


where the {ψi (δ)}’s are monic nonzero polynomials satisfying

ψi (δ) |ψi+1 (δ) and di (δ) = di−1 (δ) ψi (δ)

where di (δ) is the gcd of all i × i minors of P (δ) (d0 = 1). The
{ψi (δ)}’s are called invariant factors, and the {di (δ)}’s determinant
divisors.

Following the ideas ofMolinari (1976) and Silverman (1969), let
us define {∆k (δ)} matrices generated by the following algorithm,

∆0 , 0, G0 (δ) , C (δ) , F0 (δ) , D (δ)

Sk (δ) ,


∆k (δ) B (δ)

Fk (δ)


, k ≥ 0

Fk+1 (δ) Gk+1 (δ)
0 ∆k+1 (δ)


, Tk (δ)


∆k (δ) B (δ) ∆k (δ) A (δ)

Fk (δ) Gk (δ)

 (3)

where Tk (δ) is an invertible matrix over R [δ] that transforms Sk
into its Hermite form, and∆0is of dimension 1 by n. Then, {Mk (δ)}
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