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a b s t r a c t

In general, spacecraft are designed to be maneuvered to achieve pointing objectives. To reorient the
spacecraft with zero angular velocity at the end of the maneuver, a three-axis control design is usually
used. When an actuator fails among three actuators, one must achieve these objectives using two control
inputs, so that new control laws need to be considered. A simple and novel control law, which is based
on the sequential Euler angle rotation strategy, is addressed. This paper explores a near minimum
time control problem with constrained control input magnitudes. By introducing the three sequential
sub-maneuvers with Euler-angle transformations, the governing nonlinear equations become rigorously
linear, which permits a closed-form solution to be obtained for the switch times and final time, where the
three sub-maneuvers are coupled through the unknown switch times. A numerical example demonstrates
that the three-dimensional maneuver for an asymmetric spacecraft with two constrained control inputs
can be successfully performed using the proposed closed-form solution.

Published by Elsevier Ltd.

1. Introduction

This work addresses the problem of reconfiguring spacecraft
maneuvering control laws for handling an under-actuated system
(whichmodels an actuator failure), where only two functioning ac-
tuators along the unique body axes are assumed to be available.
Many researchers have proposed successful algorithms for con-
trolling the attitude motion of rigid and flexible spacecraft when
three control actuators are available (Junkins & Turner, 1980, 1986;
Turner & Junkins, 1980). Numerous feedback control formulations
are available for handling off-nominal control strategies. For ex-
ample, Tsiotras and Longuski (1995) considered the problem of de-
signing control strategies for handling situations where sensor and
actuator failures limit the control options available for carrying out
the original mission objectives. Keraï (1995) examined the more
extreme case where only a single control actuator is available; not
surprisingly, he concluded that the single actuator case is not con-
trollable. Brockett (1983) showed that the two actuator control
cases can bemade asymptotically stable about the origin. Shen and
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Tsiotras (1999); Tsiotras (1997); Tsiotras, Corless, and Longuski
(1995); Tsiotras and Doumtchenko (2000); Tsiotras and Luo (1997,
1998, 2000); Tsiotras and Schleicher (2000) further addressed the
problem of stabilization of axis-symmetric spacecraft by develop-
ing a tracking control law formulation. Coron and Keraï (1996) and
Morin, Samson, Pomet, and Jiang (1995) presented approximate
strategies that switch between two different control laws. Kim,
Turner, and Junkins (2014a,b) suggested a general optimal con-
trol solution minimizing control torque using the Homotopy ap-
proach, but it is computationally expensive. Krishnan (1992) in-
troduced a sequentialmaneuver strategy for three-dimensional (3-
D) reorientation of spacecraft, but more torque consumption is re-
quired by performing unnecessary sub-maneuvers. Recently, Kim
(2010); Kim, Turner, and Leeghim (in press) suggested a simple and
novel way to handle the failure control problem by introducing a
sequential maneuver approach with Euler-angle transformations,
which provides two possible sets of three successive rotations. It
avoids exciting nonlinear coupling interaction effects in the equa-
tion ofmotion and attitude kinematics during sub-maneuvers (Kim
& Turner, 2012, 2013a). Analytically, because the sub-maneuver
problems are coupled by unknown switch times, the problem leads
to a high dimensioned optimization problem, where it is very im-
portant to specify accurate starting guesses for the costates (Kim &
Turner, 2013b). The problem is computationally challenging, be-
cause the numerical algorithm must deal with jump boundary
conditions for the unknown switch times that must be iteratively
solved (Kim, Turner, & Leeghim, 2013).
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In this work, the authors address the optimal near minimum
time reorientation problem for an asymmetric rigid spacecraft
with only two available constrained control inputs. The goal of the
problem is to carry out three sequential single-axis maneuvers of
unknown duration which are coupled through the appearance of
unknown switch times in the necessary conditions for the optimal
control solutions. A sub-optimal solution is obtained by coupling
the necessary conditions for the sub-maneuvers. The solution is
assumed to consist of three maneuver periods and five switch
times: (1) one switch time for eachmaneuver (we have out of three
sub-maneuvers) from bang–bang type controls and (2) two switch
times from three sequential maneuvers. The attitude motion for
the spacecraft is modeled using Euler angle kinematics because it
has no singular point for the assumed sequential control with zero
initial angular velocity.

The major contribution of this work includes developing
a solvable set of necessary conditions for three coupled sub-
maneuvers that yields a global capability for carrying out arbitrary
3-D spacecraft maneuvers that optimally handle the special case
of a failed actuator. Three steps are required for completing the
algorithm: (1) obtaining optimality conditions for the constrained
near minimum time control problem, (2) developing analytic
closed-form solutions for the switch times and final time, and
(3) determining an optimal sequential Euler angle rotation
sequence by comparing the numerical values obtained for each
maneuver sequences’ cost function. The proposed approach is
demonstrated to render the nonlinear 3-D maneuver problem
tractable by using on-board spacecraft computers.

2. Problem formulation

2.1. Dynamics and kinematics

The two actuator case considered herein models a failed
actuator case for an on-orbit spacecraft. Our goal is to develop
optimal near minimum time maneuver strategies that achieve
the originally desired 3-D maneuver. As a concrete example, we
assume that the control actuator operating about the third body
axis has failed. The rotational dynamics equation of motion for
an asymmetric rigid spacecraft controlled by the remaining two
control inputs, along the first and second body axes, is given byKim
(2013)J1ω̇1
J2ω̇2
J3ω̇3


=


(J2 − J3) ω2ω3
(J3 − J1) ω3ω1
(J1 − J2) ω1ω2


+

u1
u2
0


(1)

where J1, J2, and J3 are the principalmoments of inertia;ω1,ω2, and
ω3 are the angular velocities along the body axes; and u1 and u2 are
the control inputs along the body axes.

There are many potential sets of variables that can be used
to describe the attitude motion of rotating spacecraft. Examples
include: Euler angles, quaternions, direction cosine matrix (DCM),
modified Rodrigues parameters (MRPs), etc. A common problem
to be dealt with in choosing a set of attitude variables is the
potential for encountering a geometric singularity that disrupts the
numerical integration process. For example, the so-called gimbal
lock singularity of Euler angles limits their utility for arbitrary
large angle concepts. However, under the assumption that the
initial angular velocity is zero, there is no singularity issue for
Euler angles when sequential maneuvers are utilized, and this
observation is exploited in the developments that follow. The
Euler angle kinematic differential equation in terms of the angular
velocities of the rigid spacecraft is given by Crassidis and Junkins
(2012); Schaub and Junkins (2009)θ̇1

θ̇2
θ̇3

 =

C11 C12 C13
C21 C22 C23
C31 C32 C33

 
ω1
ω2
ω3


(2)

where [C] is the DCM, which is composed with the elements Cij
(i, j = 1, 2, and 3).

2.2. Single-axis special case

For a single-axis special case with zero initial angular velocities,
the DCM in Eq. (2) reduces to I3×3 and angular velocities, which are
not associated with the rotation axis, are zero. For example, the
rotational dynamics for the 1-axis maneuver can be written as
θ̇1, θ̇2, θ̇3

T
=


ω1, 0, 0

T
. (3)

Then, the kinematic and rotational dynamic equations for an
arbitrary single-axis maneuver can be simply expressed as

θ̇
ω̇


=


0 1
0 0

 
θ
ω


+


0
1/J


u (4)

where {θ, ω}
T is the state vector and the control input is

constrained by

|u(t)| ≤ umax. (5)

The objective is to determine a control input to bring any given
initial state to a desired final state, which is assumed to be the
origin given by
θ(T ), ω(T )

T
= 02×1 (6)

where T is the free final time.
A minimum time control solution is developed by defining the

Lagrange form of a performance index given by

J =

 T

t0
1 dt (7)

where t0 is the fixed initial time. An equation of this type is
defined for each sub-maneuver. As a result, a final maneuver time
is recovered for each sub-maneuver.

3. Closed-form solution derivation

3.1. Optimality conditions

Using standard calculus of variations techniques, the Hamilto-
nian for the given problem is defined as

H = 1 + λθ θ̇ + λωω̇ = 1 + λθω + λω

u
J

(8)

where {λθ , λω}
T is the costate vector, and one obtains the costate

equations


λ̇θ

λ̇ω


= −


∂H

∂θ
∂H

∂ω

 =


0

−λθ


. (9)

Because the final time is unspecified, the final time transversal-
ity condition is defined by

0 = H(T ) = 1 + λθ (T )ω(T ) + λω(T )
u(T )

J
. (10)
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