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a b s t r a c t 

Most classical bearing-only target tracking algorithms model the measurement likelihood by one Gaus- 

sian distribution. The effectiveness of one Gaussian distribution model relies heavily on the accuracy of 

the predicted target position. However, due to the high nonlinearity of the bearing-only measurement, 

the predicted target position is mostly inaccurate before the target state observability is established. As a 

consequence, some classical nonlinear filters become not applicable for tracking bearing-only targets, es- 

pecially when the measurements of multiple targets and clutter are present. The published bearings-only 

multiple-target tracking algorithms suffer from either the estimation inaccuracy or lack of track trajecto- 

ries. Motivated by the problems mentioned above, we propose an improved labeled multi-Bernoulli filter 

for the goal of reducing estimation error under the premise that track trajectories are guaranteed. The 

proposed method divides the bearing measurement uncertainty into several measurement components 

that the measurement likelihood can be approximated by a Gaussian mixture. By assigning each track a 

unique label, the previous scan estimations and current scan measurements are associated and the track 

trajectories become available. Simulation results show that the proposed method considerably reduces 

estimation error. Further, various scenario parameters are investigated to validate the effectiveness of the 

proposed method. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The problem of bearing-only tracking (BOT) [1] can be referred 

to as target motion analysis (TMA) [2] and has been widely studied 

for decades. This problem is crucial for a variety of surveillance 

systems such as mobile platforms equipped with passive sonar 

that detects the radiated signals from moving objects or air- 

crafts using an electronic warfare device [3,4] . The bearing-only 

tracking problem is essential due to two features: measurement 

nonlinearity and lack of system observability [5] . The extended 

Kalman filter (EKF) [6] has been generally applied for target 

tracking with nonlinear measurements. The EKF linearizes the 

measurement nonlinearity around the predicted target position 

through first-order approximation, which holds when the pre- 

dicted target position is accurate enough but can introduce large 

estimation errors or even divergence in the presence of inaccuracy 

[7] . Instead of linearizing the measurement nonlinearity, the 

unscented Kalman filter (UKF) [7] utilizes the unscented transform 

to sample and propagate the probability density function by sigma 
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points, while the particle filter (PF) [8] uses a large number of 

weighted random (Monte Carlo) samples. When only the bearing 

information is provided, the distance between a passive observer 

and a target is not available, which leads to the system state 

observability problem for the BOT problem. Due to the unknown 

distance, the target of interest cannot be distinguished from the 

other targets of that direction (bearing). Thus, the observer must 

‘outmaneuver’ the target to satisfy the observability condition to 

recognize the target of interest, i.e., the observer motion model 

must be at least one derivative higher than that of the target [9] . 

For practical applications, a filter structure such as the EKF, the 

UKF and the PF cannot be directly applied for tracking bearing- 

only targets in cluttered environments. One has to resort to the 

data association algorithms to account for the measurement origin 

uncertainty due to the presence of multiple targets and clutter 

measurements. In addition, due to the limited prior information 

of the surveillance region, real target tracking systems usually 

utilize the received measurements for track initiation. The received 

measurements can either originate from the true targets or clutter 

such that both true tracks (initialized by target measurements) 

and false tracks (initialized by clutter measurements) are gener- 

ated. The false tracks that follow wrong or not existing targets are 

subjected to termination. Then, a metric of evaluating track quality 
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Nomenclature 

A. List of acronyms 

BOT Bearing-only tracking 

TMA Target motion analysis 

EKF Extended Kalman filter 

UKF Unscented Kalman filter 

PF Particle filter 

GMM Gaussian mixture measurement 

GMM-ITS Gaussian mixture measurement integrated track 

splitting 

MTT Multi-target tracking 

MHT Multiple hypothesis tracking 

JIPDA Joint integrated probabilistic data association 

GMM-JITS Gaussian mixture measurement joint integrated 

track splitting 

HPRF High pulse repetition frequency 

RFS Random finite set 

CBMeMBer Cardinality balanced multi-target multi-Bernoulli 

δ-GLMB δ-generalized labeled multi-Bernoulli 

LMB Labeled multi-Bernoulli 

SLAM Simultaneous localization and mapping 

LMB-GMM Labeled multi-Bernoulli with Gaussian mixture 

measurements 

SMC Sequential Monte Carlo 

SIR Sequential importance resampling 

RPF Regularized particle filter 

OSPA Optimal sub-pattern assignment 

LMB-EKF Labeled multi-Bernoulli with extended Kalman 

filter 

LMB-UKF Labeled multi-Bernoulli with unscented Kalman 

filter 

LMB-SMC Labeled multi-Bernoulli with sequential Monte 

Carlo implementation 

B. List of symbols 

x k Single-target state at scan k 

X k Multi-target state at scan k 

Z k Multi-target observation at scan k 

Z k Sequence of measurement sets up to 

scan k 

X Target state space 

Z Measurement space 

L Label space 

π k ( X k | Z 
k ) Multi-target state density X k given 

measurement sequence Z k 

r Target existence probability 

� Track label 

p ( x , � ) Probability density function of track 

with label � 

x Labeled single-target state 

X Labeled multi-target state 

�( X ) Distinct label indication to ensure labels 

in X are distinct 

L ( X ) The set of labels of X 

ω( L ) Weight of the hypothesis that L is the 

set of track labels 

σφ Sensor noise standard deviation 

A k The number of Gaussian measurement 

components generated by one bearing 

measurement 

a Gaussian measurement component index 

L̄ k,a The mean range of interval a 

�L k, a The length of range interval a 

y a 
k 

Mean of Gaussian measurement compo- 

nent a ’s probability density function at 

scan k 

R a 
k 

Covariance of Gaussian measurement 

component a ’s probability density func- 

tion at scan k 

γ a 
k 

Weight of Gaussian measurement com- 

ponent a at scan k 

z k, i The i th measurement in Z k 

p (s ) 
x,k 

Sensor position in x axis 

T k, i Rotation matrix of measurement z k, i 

λk Coordinate transformation factor at scan 

k 

c Track component index 

C k The number of track components at scan 

k 

ξ k ( c ) Track component probability 

p ( x , � | c, Z ) Probability density function of track 

component c in track � 

x c Mean of track component c ’s probability 

density function 

P c Covariance of track component c ’s 

probability density function 

X + Predicted LMB RFS 

W The survival LMB RFS 

ω + ,S (L ) Weight of the hypothesis that L is the 

label set of survival tracks 

r (� ) + ,S Predicted target existence probability of 

survival track with label � 

p (� ) + ,S Predicted probability density function of 

survival track with label � 

p S ( x , � ) State-dependent target survival proba- 

bility 

x̄ Predicted single-target state 

Y The newborn LMB RFS 

ω B ( L ) Weight of the hypothesis that L is the 

label set of newborn tracks 

r (� ) 
B 

Initial target existence probability of 

newborn track with label � 

p (� ) 
B 

Initial probability density function of 

newborn track with label � 

X 

(i ) 
+ The i th group of the predicted LMB RFS 

θ Measurements-to-tracks association 

θ ( � ) The measurement index associated to 

track � under θ
F(L ) The collection of finite subsets of L 


 The space of measurements-to-tracks 

association 

ω 

(I + ,θ ) Updated weight of the hypothesis that 

the predicted track labels in set I + are 

associated with measurements under θ
g ( z k, i | x , � ) The measurement likelihood of mea- 

surement z k, i with respect to track � 

p D ( x , � ) State-dependent target detection proba- 

bility 

p G Gating probability that the true mea- 

surement falls in the gate 

κ( z k, i ) Poisson clutter intensity at measurement 

z k, i 

p (θ ) (x, � | Z k +1 ) Updated single-target probability density 

function of track � under θ
p (θ ) (x, � | c, a, Z k +1 ) Probability density function of the new 

track component generated by measure- 
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