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a b s t r a c t 

Compressed Sensing (CS) is a new data acquisition theory based on the existence of a sparse representa- 

tion of a signal and a projected dictionary PD , where P ∈ R 

m ×d is the projection matrix and D ∈ R 

d×n is 

the dictionary. To recover the signal from a small number m of measurements, it is expected that the pro- 

jected dictionary PD is of low mutual coherence. Several previous methods attempt to find the projection 

P such that the mutual coherence of PD is low. However, they do not minimize the mutual coherence 

directly and thus they may be far from optimal. Their used solvers lack convergence guarantee and thus 

the quality of their solutions is not guaranteed. This work aims to address these issues. We propose to 

find an optimal projection matrix by minimizing the mutual coherence of PD directly. This leads to a 

nonconvex nonsmooth minimization problem. We approximate it by smoothing, solve it by alternating 

minimization and prove the convergence of our algorithm. To the best of our knowledge, this is the first 

work which directly minimizes the mutual coherence of the projected dictionary and has convergence 

guarantee. Numerical experiments demonstrate that our method can recover sparse signals better than 

existing ones. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Compressed Sensing (CS) [1,2] is a new sampling/data acquisi- 

tion theory asserting that one can exploit sparsity or compressibil- 

ity when acquiring signals of interest. It shows that signals which 

have a sparse representation with respect to appropriate bases can 

be recovered from a small number of measurements. A fundamen- 

tal problem in CS is how to construct a measurement matrix such 

that the number of measurements is near minimal. 

Consider a signal x ∈ R 

d which is assumed to have a sparse 

representation with respect to a fixed overcomplete dictionary D ∈ 

R 

d×n ( d < n ). This can be described as 

x = D α, (1) 

where α ∈ R 

n is a sparse representation coefficient, i.e., ‖ α‖ 0 � n . 

Here ‖ α‖ 0 denotes the � 0 -norm which counts the number of 

nonzero elements in α. The solution to problem (1) is not unique 

since d < n . To find an appropriate solution in the solution set of 

(1) , we need to use some additional structures of D and α. Con- 
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sidering that α is sparse, we are interested in finding the sparsest 

representation coefficient α. This leads to the following sparse rep- 

resentation problem 

min 

α
‖ 

α‖ 0 , s . t . x = D α. (2) 

However, the above problem is NP-hard [3] and thus is challeng- 

ing to solve. Some algorithms, such as Basis Pursuit (BP) [4] and 

Orthogonal Matching Pursuit (OMP) [5] , can be used to find sub- 

optimal solutions. 

An interesting theoretical problem is that under what condi- 

tions the optimal solution to (2) can be computed. If the solution 

is computable, can it be exactly or approximately computed by BP 

or OMP? Some previous works answer the above questions based 

on the mutual coherence of the dictionary D [6] . 

Definition 1. Given D = [ d 1 , . . . , d n ] ∈ R 

d×n , its mutual coherence 

is defined as the largest absolute and normalized inner product be- 

tween different columns of D , i.e., 

μ(D ) = max 
1 ≤i, j≤n 

i � = j 

| d 

T 
i 

d j | 
‖ 

d i ‖ 

∥∥d j 

∥∥ . 

https://doi.org/10.1016/j.sigpro.2018.04.020 

0165-1684/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.sigpro.2018.04.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.04.020&domain=pdf
mailto:canyilu@gmail.com
mailto:zlin@pku.edu.cn
https://doi.org/10.1016/j.sigpro.2018.04.020


46 C. Lu et al. / Signal Processing 151 (2018) 45–55 

The mutual coherence measures the highest correlation be- 

tween any two columns of D . It is expected to be as low as possi- 

ble in order to find the sparest solution to (2) . 

Theorem 1. [6 , 7 , 8] For problem (2) , if α satisfies 

‖ 

α‖ 0 < 

1 

2 

(
1 + 

1 

μ(D ) 

)
, (3) 

then the following results hold: 

• α is the solution to (2) . 
• α is also the solution to the following convex � 1 -minimization 

problem 

min 

α
‖ 

α‖ 1 , s . t . x = D α, 

where ‖ α‖ 1 = 

∑ 

i | αi | is the � 1 -norm of α. 
• α can be obtained by OMP. 

The above theorem shows that if the mutual coherence of D is 

low enough, then the sparest solution to (2) is computable. Thus, 

how to construct a dictionary D with low mutual coherence is cru- 

cial in sparse coding. In CS, to reduce the number of measure- 

ments, we face a similar problem on the sensing matrix construc- 

tion. 

The theory of CS guarantees that a signal having a sparse rep- 

resentation can be recovered exactly from a small set of linear 

and nonadaptive measurements. This result suggests that it may be 

possible to sense sparse signals by taking far fewer measurements 

than what the conventional Nyquist–Shannon sampling theorem 

requires. But note that CS differs from classical sampling in sev- 

eral aspects. First, the sampling theory typically considers infinite- 

length and continuous-time signals. In contrast, CS is a mathemat- 

ical theory that focuses on measuring finite-dimensional vectors in 

R 

n . Second, rather than sampling the signal at specific points in 

time, CS systems typically acquire measurements in the form of in- 

ner products between the signal and general test functions. At last, 

the ways to dealing with the signal recovery are different. Given 

the signal x ∈ R 

d in (1) , CS suggests replacing these n direct sam- 

ples with m indirect ones by measuring linear projections of x de- 

fined by a proper projection or sensing matrix P ∈ R 

m ×d , i.e., 

y = Px , (4) 

such that m � d . It means that instead of sensing all n elements of 

the original signal x , we can sense x indirectly by its compressed 

form y in a much smaller size m . Surprisingly, the original signal 

x can be recovered from the observed y by using the sparse rep- 

resentation in (1) , i.e, y = PD α with the sparest α. Thus the recon- 

struction requires solving the following problem 

min 

α
‖ 

α‖ 0 , s . t . y = M α, (5) 

where M = PD ∈ R 

m ×n is called the effective dictionary. Problem 

(5) is also NP-hard. As suggested by Theorem 1 , if the mutual co- 

herence of PD is low enough, then the solution α to (5) is com- 

putable by OMP or by solving the following convex problem 

min 

α
‖ 

α‖ 1 , s . t . y = M α. (6) 

Finally, the original signal x can be reconstructed by x = D α. So it 

is expected to find a proper projection matrix P such that μ( PD ) 

is low. Furthermore, many previous works [9,10] show that the re- 

quired number of measurements for recovering the signal x by CS 

can be reduced if μ( PD ) is low. 

In summary, the above discussions imply that by choosing an 

appropriate projection matrix P such that μ( PD ) is low enough, 

the true signal x can be recovered with high probability by ef- 

ficient algorithms. At the beginning, random projection matrices 

were shown to be good choices since their columns are incoher- 

ent with any fixed basis D with high probability [11] . However, 

many previous works [9,10,12] show that well designed determin- 

istic projection matrices can often lead to better performance of 

signal reconstruction than random projections do. In this work, we 

focus on the construction of deterministic projection matrices. We 

first give a brief review on some previous deterministic methods. 

1.1. Related work 

In this work, we only consider the case that D is fixed while P 

can be changed. Our target is to find P by minimizing μ( M ), where 

M = PD . If each column of M is normalized to have unit Euclidean 

length, then μ(M ) = ‖ G ‖ ∞ , off, where G = (g i j ) = M 

T M is named 

as the Gram matrix and ‖ G ‖ ∞ , off = max i � = j | g i j | is the largest off- 

diagonal element of | G |. Several previous works used the Gram ma- 

trix to find the projection matrix P [9,10,12] . We give a review on 

these methods in the following. 

1.1.1. The algorithm of Elad 

The algorithm of Elad [9] considers minimizing the t -averaged 

mutual coherence defined as the average of the absolute and nor- 

malized inner products between different columns of M which are 

above t , i.e., 

μt (M ) = 

∑ 

1 ≤i, j≤k, i � = j χt (| g i j | ) | g i j | ∑ 

1 ≤i, j≤k, i � = j χt (| g i j | ) , 

where χ t ( x ) is the characteristic function defined as 

χt (x ) = 

{
1 , if x ≥ t, 
0 , otherwise , 

and t is a fixed threshold which controls the top fraction of the 

matrix elements of | G | that are to be considered. 

To find P by minimizing μt ( M ), some properties of the Gram 

matrix G = M 

T M are used. Assume that each column of M is nor- 

malized to have unit Euclidean length. Then 

diag ( G ) = 1 , (7) 

rank ( G ) = m. (8) 

The work [9] proposed to minimize μt ( M ) by iteratively updating 

P as follows. First, initialize P as a random matrix and normalize 

each column of PD to have unit Euclidean length. Second, shrink 

the elements of G = M 

T M (where M = PD ) by 

g i j = 

{ 

γ g i j , if | g i j | ≥ t, 
γ t sign (g i j ) , if t > | g i j | ≥ γ t, 
g i j , if γ t > | g i j | , 

where 0 < γ < 1 is a down-scaling factor. Third, apply SVD and re- 

duce the rank of G to be equal to m . At last, build the square root S 

of G : S T S = G , where S ∈ R 

m ×n , and find P = SD 

† , where † denotes 

the Moore–Penrose pseudoinverse. 

There are several limitations of the algorithm of Elad. First, it 

is suboptimal since the t -averaged mutual coherence μt ( M ) is dif- 

ferent from the mutual coherence μ( M ) which is our real target. 

Second, the proposed algorithm to minimize μt ( M ) has no con- 

vergence guarantee. So the quality of the obtained solution is not 

guaranteed. Third, the choices of two parameters, t and γ , are cru- 

cial for the signal recovery performance in CS. However, there is 

no guideline for their settings and thus in practice it is usually dif- 

ficult to find their best choices. 

1.1.2. The algorithm of Duarte-Carajalino and Sapiro 

The algorithm of Duarte-Carajalino and Sapiro [12] is not a 

method that is based on mutual coherence. It instead aims to find 

the sensing matrix P such that the corresponding Gram matrix is 

as close to the identity matrix as possible, i.e., 

G = M 

T M = D 

T P 

T PD ≈ I , (9) 
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