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a b s t r a c t

This paper presents almost sure convergence rates for system identification under binary, quantized, and
regular sensors. To accommodate practicalmodel complexity constraints, the systemunder consideration
is represented by a modeled part together with an unknown-but-bounded unmodeled dynamics. Under
uncorrelated noise sequences, identification errors with different sensor types are studied and tight error
bounds are obtained without information or constraints on noise moment conditions. The results are
then extended to correlated noise sequences whose remote past and distant future are asymptotically
independent. In both cases, almost sure error bounds of the laws of iterated logarithms type are
derived.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

This paper focuses on the rate of convergence analysis for
system identification algorithms under observations using binary,
quantized, and regular sensors. To contain model complexity, the
systems under consideration are represented by a modeled part
together with unknown-but-bounded unmodeled dynamics. Our
main effort is on establishing almost sure or strong convergence
rates of the algorithms. Under broad conditions, error bounds of
iterated logarithm types are obtained.

System identification has been studied extensively in the past
several decades; see Chen and Guo (1991), Ljung (1987), Milanese
and Tempo (1985), Milanese and Vicino (1993), Wang (1997),
Wang and Yin (2002), and Wang and Yin (2007), Yin, Wang, and
Kan (2009) among others; see also related work of Kushner and
Yin (2003). One of the most recent efforts has been devoted to the
study of system identification under binary and quantized sensors.
In the early 2000s, we began our quest on the subject in Wang,
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Zhang, and Yin (2003). Since then, this line of work has been
significantly expanded. Many of the recent results have been
documented in Wang, Yin, Zhang, and Zhao (2010). For parameter
estimation under binary or quantized observations together
with unmodeled dynamics, under broad conditions, it has been
shown that the estimators converge strongly (with probability
one) to a neighborhood that centers on the true parameter
values. In addition, scaled sequences of the estimation errors
converge in distribution to a normal random variable, which
characterizes convergence rates with the scaling factor together
with the asymptotic covariance. The convergence is in the sense
of convergence in distribution. However, there has not been any
rate-of-convergence results in the almost sure sense yet. This paper
aims to derive such convergence rates.

In this work, we examine system identification accuracy and
convergence rates under binary and quantized observations with
unmodeled dynamics. This is our first attempt to resolve the
strong rate-of-convergence issues under different sensor types
and unmodeled dynamics. Our aim is to obtain tight error
estimates in the context of the laws of iterated logarithms. Our
investigation starts with the case of independent and identically
distributed (i.i.d.) noises, which enables us to obtain tight error
bounds and clarify understanding of relations among data size,
unmodeled dynamics, and sensor complexity. The results are
further expanded to accommodate more practical correlated noise
processes of mixing types whose remote past and distant future
are asymptotically independent. Estimation error bounds and
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strong convergence rates are derived. Impact of sensor types and
quantization levels is investigated within the same framework,
which characterizes sensor complexity issues. Understanding
from these findings will be of utility for a wide spectrum
of applications involving sensor limitations and communication
channels, especially networked systems.

The rest of the paper is arranged as follows. Section 2
begins with the formulation of the system identification problem.
Section 3 is devoted to the study of systems with observations
using binary sensors.We first consider independent and identically
distributed noise sequences, which lead to a clean representation
of the asymptotic strong convergence rates. The results are then
extended to include correlated noises of mixing types. Section 4
treats observations with quantized sensors. For comparison of
impact of sensor limitations, in Section 5, we examine the almost
sure error bounds when regular sensors are used in identification.
Section 6 presents a couple of examples and issues several further
remarks to conclude the paper.

2. Formulation

Consider a single-input–single-output linear time-invariant,
stable, discrete-time system

y(t) =

∞
i=0

aiu(t − i) + d(t), t = 0, 1, . . . , (1)

where d(t) is the disturbance, u(t) is the input with u(t) = 0
when t < 0; and a = {ai : i ≥ 0} satisfies


∞

i=0 |ai| < ∞. In
what follows, ∥ · ∥ denotes the ℓ1 norm, i.e., ∥a∥ =


∞

i=0 |ai|. For
simplicity, the starting time is set at t = 0, although this is not
essential. The vector a = {ai : i ≥ 0} represents the unknown
parameter. For a selected model order n, the parameter vector is
split into the n-dimensional vector θ = (a0, . . . , an−1)

′
∈ Rn,

known as the modeled part, and the possibly infinite dimensional
vector θ = (an, an+1, . . .)

′, which represents the unmodeled
dynamics. In the above and hereafter, z ′ denotes the transpose of z.
Our task is to identify θ under noisy observation. In addition to the
modeled part, the system output is impacted by both unmodeled
dynamics and observation noise

y(t) = φ′(t)θ + φ̃′(t)θ̃ + d(t), (2)

whereφ′(t) = (u(t), . . . , u(t−n+1)) and φ̃′(t) = (u(t−n), u(t−
n − 1), . . .).

The convergence in the almost sure sense has been established
in our previous work; see Wang et al. (2010, Chapter 3) for a
summary. This paper aims to obtain convergence rate result in the
almost sure sense. To illustrate the desired result, we consider the
binary sensor without unmodeled dynamics for simplicity. Under
suitable assumptions, ∥θK − θ∥ → 0 w.p.1 as K → ∞. This strong
consistency assertion is more or less a law of large number result.
The rate of convergence of the sequence of parameter estimates
can be considered for the scaled sequence of centered estimation
errors

√
K(θK − θ), which converges in the sense of in distribution

to a normal random variable. So one way of treating the rate of
convergence is to use the asymptotic normality together with the
scaling factor

√
K and the asymptotic covariance, which indicates

how the estimation errors depend on the scaling factor and how
much variation the estimates have. The law of iterated logarithm
to be obtained in this paper is a sharp result and describes the
magnitude of the fluctuations in the almost sure sense. It is easily
seen that although

√
K(θK − θ) convergence in distribution, it is

divergent in the almost sure sense. A question then is: What is the
appropriate scaling factor ∆K so that ∆K

√
K(θK − θ), the scaled

sequence of error will be convergent in the almost sure sense.

This paper provides a very precise bound in a pathwise sense. It
demonstrates that ∆K = (log log K)−1/2.

Throughout this paper we assume that the input {u(t)} is n-
periodic and denote its n × n Toeplitz matrix by

Φ =


u(0) u(n − 1) . . . u(2) u(1)
u(1) u(0) . . . u(3) u(2)

...
...

...
...

...
u(n − 2) u(n − 3) . . . u(0) u(n − 1)
u(n − 1) u(n − 2) . . . u(1) u(0)

 .

Assuming that u(t) is full rank implies that Φ is invertible. The
unmodeled dynamics is unknown but bounded by ∥θ̃∥ ≤ ε for
some ε > 0. Since u(t) is periodic, it is bounded with ∥u∥∞ ≤

c0 < ∞ for some c0 > 0. Consequently,

sup
t

|φ̃′(t)θ̃ | ≤ ∥u∥∞∥θ̃∥1 ≤ c0ε := ε1.

For simplicity and without loss of generality, in this paper we
normalize the input to ∥u∥∞ = 1, leading to c0 = 1 and ε1 = ε.
Write log x = ln(x ∨ e), where a ∨ b = max{a, b} for two real
numbers a and b. Define {u(i) : −n ≤ i ≤ n − 1} asu(i − n) =u(i) = u(i) when 0 ≤ i ≤ n − 1.

For 0 ≤ j ≤ n − 1 and k ≥ 0, set

αj :=

∞
l=0

aln+j, βj :=

n−1
i=0

u(j − i)αi

γ k
j := βj −

∞
i=0

aiu(kn + j − i)

= βj −

n−1
i=0

u(j − i)
i+ln≤kn+j

l=0

aln+i.

Then we have

β = Φα, where β = (β0, . . . , βn−1)
′

α = (α0, . . . , αn−1)
′.

(3)

Henceforth, the notation O(y) denotes a vector-valued function of
y such that ∥O(y)∥/∥y∥ ≤ κ for some κ > 0, and o(y) denotes a
function such that limy→b(∥o(y)∥/∥y∥) = 0 with b being either 0
or ∞, where ∥ · ∥ can be any vector norm. Also, the phrase almost
surelywill be abbreviated to a.s.We also denoteM = ∥u∥∞ ×∥a∥.

3. Binary sensors

In this section, we consider the case when output observations
are measured by a binary-valued sensor

s(t) = I(y(t) ≤ C) =


1 if y(t) ≤ C,
0 else.

3.1. Independent and identically distributed noise sequences

In this section we assume: The disturbance {d(t)} is an i.i.d
sequence of randomvariables. Its distribution function is F that has
a density function f being continuous and positive on [C − M −

σ , C + M + σ ] for some σ > 0. As a result, we deduce that f and
(d/dx)F−1 are boundedon [C−M, C+M] and [F(C−M), F(C+M)],
respectively. Inwhat follows, letK be the number of periods so that
the discrete time elapsed is k = nK .
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