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a b s t r a c t 

This work analyzes the effects on support recovery for different choices of the hyper- or regularization 

parameter in LASSO-like sparse and group-sparse regression problems. The hyperparameter implicitly se- 

lects the model order of the solution, and is typically set using cross-validation (CV). This may be com- 

putationally prohibitive for large-scale problems, and also often overestimates the model order, as CV 

optimizes for prediction error rather than support recovery. In this work, we propose a probabilistic ap- 

proach to select the hyperparameter, by quantifying the type I error (false positive rate) using extreme 

value analysis. From Monte Carlo simulations, one may draw inference on the upper tail of the distri- 

bution of the spurious parameter estimates, and the regularization level may be selected for a specified 

false positive rate. By solving the e group-LASSO problem, the choice of hyperparameter becomes inde- 

pendent of the noise variance. Furthermore, the effects on the false positive rate caused by collinearity in 

the dictionary is discussed, including ways of circumventing them. The proposed method is compared to 

other hyperparameter-selection methods in terms of support recovery, false positive rate, false negative 

rate, and computational complexity. Simulated data illustrate how the proposed method outperforms CV 

and comparable methods in both computational complexity and support recovery. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Estimating the sparse parameter support for a high-dimensional 

regression problem has been the focus of much scientific attention 

during the past two decades, as this methodology has shown its 

usefulness in a wide array of applications, ranging from spectral 

analysis [1–3] , array- [4–6] and audio processing [7–9] , to biomed- 

ical modeling [10] , magnetic resonance imaging [11,12] , and more. 

For many of these and for other applications, the retrieved data 

may be well explained using a highly underdetermined regression 

model, in which only a small subset of the explanatory variables 

are required to represent the data. The approach is typically re- 

ferred to as sparse regression; the individual regressors are called 

atoms, and the entire regressor matrix the dictionary, which is 

typically customized for a particular application. The common ap- 

proach of inferring sparsity on the estimates is to solve a regular- 

ized regression problem, i.e., appending the fit term with a regu- 

larization term that increases as variables become active (or non- 

zero). Much of the work in the research area springs from exten- 

� This work was supported in part by the Swedish Research Council, Carl Trygger’s 

foundation, and the Royal Physiographic Society in Lund. 
∗ Corresponding author. 

E-mail address: ted@maths.lth.se (T. Kronvall). 

sions on the seminal work by Tibshirani et al., wherein the least 

absolute selection and shrinkage operator (LASSO) [13] was intro- 

duced. The LASSO is a regularized regression problem where an � 1 - 

norm on the variable vector is used as regularizer, which in signal 

processing is also referred to as the basis pursuit denoising (BPDN) 

method [14] . Another early alternative to the LASSO problem is the 

penalized likelihood problem, introduced in [15] . 

In this paper, we focus on a generalization of the sparse regres- 

sion problem, wherein the atoms of the dictionary exhibit some 

form of grouping behavior which is defined a priori . This follows 

the notion that a particular data feature is modeled not only us- 

ing a single atom, but instead by a group of atoms, such that each 

atom has an unknown (and possibly independent) response vari- 

able, but where the entire group is assumed to be either present 

or not present in the data. This is achieved in the group-LASSO 

[16] by utilizing an � 1 / � 2 -regularizer, but other approaches have 

also been successful, such as in, e.g., [9,10] . Being a generaliza- 

tion of the LASSO, the group-LASSO reverts back to the standard 

LASSO when the group sizes in the dictionary all have size one. 

Typically, results which hold for the group-LASSO thus also hold 

for the LASSO. One reason behind the success of LASSO-like ap- 

proaches is that these are typically cast as a convex optimization 

problems, for which there exists strong theoretical results for con- 

vergence and recovery guarantees (see, e.g., [17–19] , and the refer- 
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ences therein). For convex problems, there also exist user-friendly 

scientific software for simple experimentation and investigation of 

new regularizers [20] . 

The sparse regression problems described here, being a subset 

of the regularized regression problems, have in common the re- 

quirement of selecting one or several hyperparameters, which have 

the role of controlling the degree of sparsity in the solution by ad- 

justing the level of regularization in relation to the fit term. Thus, 

sparsity is subject to user control, and must therefore be chosen 

adequately for each problem. From the perspective of model or- 

der selection, one may note that there is no currently consistent 

approach to finding a correct model order (see, e.g., [21] ). Still, as 

an implicit agent of model order selection in regularization prob- 

lems, one may distinguish three main methodologies of selecting 

the regularization level. Firstly, and perhaps most commonly are 

the data-driven, or post-model selection, methods, where the per- 

formance of a number of candidate models are compared in some 

user-selected metric. To that end, the least angle regression (LARS) 

algorithm [22] calculates the entire (so called) path of solutions 

on an interval of values for the hyperparameter of a LASSO-like 

problem, and at a computational cost similar to solving the LASSO 

for a single value of the hyperparameter. However, by using warm- 

starts, a solution path may also be calculated quickly using some 

appropriate implementation of the group-LASSO. A single point on 

the solution path is then chosen based on user preference; most 

commonly prediction performance, i.e., using cross-validation (CV), 

as was done, for instance, in [23] for the multi-pitch estimation 

problem. However, due to the computationally burdensome pro- 

cess of CV, one often instead reverts to using heuristic data-driven 

approaches, or choosing the hyperparameter based on some in- 

formation criteria (see, e.g., [24] ). Another interesting contribution 

was made in [25] , wherein a covariance test statistic was used to 

determine whether to include every new regressor along a path of 

regularization values. Bayesian techniques offer another common 

approach to the model order selection problem, wherein the joint 

posterior distribution of the regression variables and the hyperpa- 

rameter are utilized, under the assumption on statistical priors on 

these, such as in, e.g., [26] . The third main group of approaches 

may be considered to be probabilistic in the sense that they make 

assumptions on only the noise statistics of the measured signal, 

and not the regression variables. Among these, the approach sug- 

gested in [27] might be most prominent (here, for simplicity, re- 

ferred to as CDS), where in order to suppress the noise compo- 

nents from propagating into the estimate, an upper-endpoint of the 

distribution is used, such that for independent Gaussian regressors 

(i.e., orthogonal dictionaries), the largest interfering noise compo- 

nents in the limit grows in proportion to some quantity. Under 

these assumptions, CDS is ostensibly blind, but will by construction 

set the regularization level high enough to guarantee noise sup- 

pression, and might thereby also suppress the signal-of-interest. 

In applications containing atoms with a high degree of collinear- 

ity, thereby violating the orthogonal assumption, this will result 

in overshooting of the regularization level. To simplify the selec- 

tion of regularization level, the scaled LASSO [28] reparametrizes 

the hyperparameter by introducing an auxiliary variable describing 

the standard deviation of the model residual. This has the effect 

that the regularization level may be selected (somewhat) indepen- 

dently of the noise variance, which is useful for the probabilistic 

approaches. 

Another method of selecting the regularization level that 

might fall into the probabilistic category is the sparse iterative 

covariance-based estimation (SPICE) method, which yields a rela- 

tively sparse parameter support by matching the observed covari- 

ance matrix and a covariance matrix parametrized by a dictionary. 

The method has been shown to work well for a variety of appli- 

cations, especially those pertaining to estimation of line spectra 

and directions-of-arrival (see, e.g., [29] ). In subsequent publications 

(see, e.g., [29,30] ), SPICE was shown to be equivalent to either the 

least absolute deviation (LAD) LASSO under a heterscedastic noise 

assumption, or the square root (SR) LASSO under a homoscedastic 

noise assumption, both for particular choices of the hyperparame- 

ter. It may be shown that the SR LASSO and the scaled LASSO are 

equivalent, and we conclude that SPICE is a robust (and possibly 

heuristic) approach of fixing the hyperparameter (somewhat) inde- 

pendently of the noise level. In a recent effort, the SPICE approach 

was extended for group sparsity [31] , showing promising results, 

e.g., for multi-pitch estimation, but also illustrating how the fixed 

hyperparameter yields estimates which are not as sparse as one 

may typically expect. A valid argument in defence of the SPICE ap- 

proach is that the measure of ’good’ in sparse estimation is not 

entirely straightforward, and not sparse enough may still be good 

enough. 

Borrowing some terminology from detection theory [32] , one 

way of measuring performance is to calculate the false negatives 

(FNs), i.e., whether atoms pertaining to the true support of the 

signal (those atoms of which the data is truly composed) are es- 

timated as zero for some choice of the hyperparameter. As the 

SPICE regularization level is typically set too low, the possibility of 

FNs is consequently also low, which for some applications may be 

the focus. Conversely, for some applications, the focus may be to 

eliminate the false positives (FPs), i.e., when noise components are 

falsely set to be non-zero while not being in the true support set. 

The FPs and FNs are also sometimes referred to as the type I and 

type II errors, respectively. In addition, a metric called sparsistency 

is sometimes used, measuring the binary output of whether the 

estimated and the true supports are identical, which is the com- 

plement of the union between FN and FP [33] . Sparsistency might 

also be unobtainable for a certain problem; avoiding FPs requires 

selecting the hyperparameter so large that FNs will arise, and sim- 

ilarly avoiding FNs will result in more FPs. Model order estimation 

can thus be seen as prioritizing between FPs and FNs, which is also 

referred to as the bias-variance trade off, and has a long history in 

the literature. Typically, model order estimation can be formulated 

as a series of hypothesis tests, subsequently tested using, e.g., F- 

test statistics for some specified significance level [34] . 

In this paper, we further this development, formulating a prob- 

abilistic method for hyperparameter selection using hypothesis 

testing. By analyzing how the noise components propagate into the 

parameter estimates for different estimators and different choices 

of the hyperparameters, we seek to increase the sparsistency of 

the group-LASSO estimate by means of optimizing the FP rate. 

By making assumptions on the noise distribution and then sam- 

pling from the corresponding extreme value distribution using the 

Monte Carlo method, the hyperparameter is chosen as an appro- 

priate quantile of the largest anticipated noise components. Avoid- 

ing FPs can never be guaranteed without maximizing the regular- 

ization level, thereby setting the entire solution to zero, but the 

risk may be quantified. By specifying the type I error, the sparsis- 

tency rate is also indirectly controlled, whenever this is feasible. 

Furthermore, for Gaussian noise, we show that the distribution for 

the maximum noise components follows a type I extreme value 

distribution (Gumbel), from which a parametric quantile may be 

obtained at a low computational cost. 

For coherent dictionaries, i.e., where there is a high degree of 

collinearity between the atoms, many of the theoretical guaran- 

tees for sparse estimation will fail to hold, along with a few of the 

methods themselves. The effects on the estimates for the collinear 

atoms are difficult to discern; depending on the problem either 

all of them, or just a few of them, become non-zero. Coherence 

therefore typically results in FPs, if the regularization level is not 

increased, which in turn might yield FNs. There exists some ap- 

proaches of dealing with coherent dictionaries. The elastic net uses 
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