
Signal Processing 151 (2018) 99–106 

Contents lists available at ScienceDirect 

Signal Processing 

journal homepage: www.elsevier.com/locate/sigpro 

Short communication 

Data-driven parameter selection for activity estimation in nuclear 

spectroscopy 

Tom Trigano 

a , ∗, Yann Sepulcre 

b 

a Department of Electrical Engineering, SCE, Ashdod Campus, Israel 
b Unit of Mathematics, SCE, Ashdod Campus, Israel 

a r t i c l e i n f o 

Article history: 

Received 20 December 2017 

Revised 27 April 2018 

Accepted 6 May 2018 

Available online 7 May 2018 

Keywords: 

Compressive sensing 

Sparse reconstruction 

Point processes 

Model selection 

Adaptive methods 

Spectroscopic signal processing 

a b s t r a c t 

One of the main objectives of nuclear spectroscopy is the estimation of the counting rate of unknown 

radioactive sources. Recently an algorithm based on a sparse reconstruction of the time signal was pro- 

posed by the authors to estimate precisely this counting rate, and computable bounds were obtained to 

quantify the performances. This approach, based on a post-processed approach of a non-negative sparse 

regression of the time signal, relies on user-defined parameters which are difficult to set up automatically 

in practice. This paper presents a data-driven strategy to select the underlying parameters. The parameter 

controlling the sparsity of the regressor is chosen based on cross-validation, while we introduce a new, 

entropy-based, criterion to select the threshold parameters. Results obtained on simulations illustrate the 

efficiency of the proposed approach. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The analysis and processing of signals based on underlying 

point processes have received a great amount of interest in numer- 

ous engineering applications, ranging from biomedical engineering 

[1] to teletraffic data analysis [2] . Among other aims, practition- 

ers from the field of nuclear spectroscopy often wish to estimate 

the activity of an unknown radioactive source as well as its con- 

tents [3] . Though numerous techniques have been developed in the 

field of nuclear science for activity estimation [4,5] , they are usu- 

ally limited to low and medium activities. 

Due to the recent developments in compressive sensing and to 

the inherent sparsity of the data at hand in these applications, 

methods to estimate the activity have been suggested by the au- 

thors [6–8] , which rely on a preliminary sparse reconstruction of 

the observed signal, and a thresholding of the obtained regres- 

sor. Theoretical and practical results [6,7] obtained on real life sig- 

nals both show the robustness and usefulness of these approaches, 

even in the case of very high counting rates. However, one of their 

shortcomings is their dependency on both a sparsity and a thresh- 

olding parameter, which are difficult to tune without preliminary 

knowledge of the source. 

This paper suggests an efficient, fully data-driven, strategy to 

choose these parameters while guaranteeing a satisfactory estima- 
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tion of the activity. The main novelty lies in the choice of the 

threshold parameter, which is based on a local entropy measure. 

Sparsity of signal representation has indeed been related to sev- 

eral measures of entropy. In [9] , the authors introduced some en- 

tropy measure associated to a (fixed) vector and several possible 

orthogonal decompositions, which has to be minimized to obtain 

some best possible representation. Entropy notions in signal repre- 

sentation can be also combined with an optimal threshold choice, 

as in [10–12] where iterative schemes are derived for its compu- 

tation. The main difference between the former approaches and 

ours lies in applying an entropy-based criterion locally, rather than 

on the whole signal. The rest of the paper is organized as fol- 

lows: Section 2 recalls the proposed approach for activity estima- 

tion based on spectroscopic data in the homogeneous case. We 

illustrate empirically that standard cross-validation to choose the 

thresholding parameter is not a valid strategy. We then present our 

method for choosing the parameters automatically in Section 3 . 

While the sparsity parameter can be chosen using regular (or mod- 

ified) cross-validation, the threshold parameter is chosen using a 

novel criterion. This criterion is based on the entropy related to 

a non-negative version of the Least Absolute Shrinkage and Selec- 

tion Operator (LASSO) regressor. Results on simulations presented 

in Section 4 illustrate the validity of the proposed approach. 
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2. Overview of the activity estimation algorithm 

We observe a signal on the time interval [0; T ] uniformly sam- 

pled on T = { 0 = t 0 , t 1 , t 2 , . . . , t N−1 = T } with sampling period �t , 

y i = 

M ∑ 

n =1 

E n �n (t i − T n ) + ε i , 0 ≤ i ≤ N − 1 , (1) 

where { T n , n ≥ 1} denotes the times of interaction between incom- 

ing photons and the detectors, { E n , 1 ≤ n ≤ M } is a sequence of in- 

dependent and identically distributed (iid) random variables rep- 

resenting the photonic energies with unknown probability density 

function, { �n , 1 ≤ n ≤ M } is a sequence of functions which charac- 

terizes the electric pulse shapes generated by the photons, and 

{ ε i , 0 ≤ i ≤ N − 1 } is a sequence of iid Gaussian random variables 

with zero mean and variance σ 2 representing the additional noise 

of the input signal. We assume that { T n , n ≥ 1} is a sample path of 

a Poisson process with unknown, possibly time-varying, activity λ. 

The estimation methods for either constant or time-varying λ rely 

on a preliminary thresholded sparse regressor, which is now de- 

tailed. 

2.1. Activity estimation based on thresholded LASSO 

As noted in [6] , neither the energies nor the shapes are known. 

However, due to the physics explaining the recorded shapes in 

gamma spectroscopy experiments with Germanium detectors, it is 

relevent to represent the signal defined in (1) with a dictionary 

of truncated gamma shapes in order to obtain a reliable model. 

We can assume that an individual pulse contains a rapidly increas- 

ing part followed by an exponential decay. We define a set of p 

pairs of such parameters by θ = { (θ (s ) 
1 

, θ (s ) 
2 

) ; s = 1 , 2 , . . . , p} . For all 

s = 1 , . . . , p, we define the following pulse shapes: 

�s (t) = c s t 
θ (s ) 

1 exp (−θ (s ) 
2 

t) 1 (0 < t ≤ τ�t) , (2) 

where τ is a positive constant integer defining the common sup- 

port of the pulse shapes, 1 (0 < t ≤ τ�t ) is the indicator function, 

being equal to 1 when 0 < t ≤ τ�t and to 0 otherwise, and c s is a 

normalizing constant chosen so that 1 
N 

∑ N−1 
i =0 �s (t i ) 

2 = 1 . Obviously, 

the set θ should be chosen carefully, in order to be well suited for 

y . For example, in the applications on real signals performed in 

[6,8] , it was empirically found that choosing θ (s ) 
1 

= θ (s ) 
2 

∈ [0 . 5 , 1 . 5] 

provided satisfactory results, and we used this choice in this pa- 

per as well. Accordingly, we define the following N × p matrix A k 

whose columns are sampled versions of the previously defined 

pulse shapes, translated by t k , A k = [ �s (t i − t k ) ] 0 ≤i ≤N−1 , 1 ≤s ≤p . Intu- 

itively, A k can be understood as a subdictionary representing the 

electrical pulses starting from the same sampling time t k . A global 

dictionary A of possible pulses occurring at different times is then 

defined by regrouping the A k ’s altogether: A = [ A 0 A 1 · · · A N−1 ] . 

Given any vector β of size pN , it is thus naturally split into blocks 

of size p : β = [ β
T 
0 ; . . . ;βT 

N−1 ] 
T 
, where for all i , βi ∈ R 

p . Through- 

out the paper, we assume that the discretization error can be ne- 

glected (a full discussion on the influence of sampling can be found 

in [13] ). Thus, the model investigated in the rest of the paper is 

y = A β + ε = 

N−1 ∑ 

k =0 

A k βk + ε , (3) 

where y = [ y 0 , y 1 , . . . , y N−1 ] 
T 

and ε = [ ε 0 , ε 1 , . . . , ε N−1 ] 
T 

represent 

the recorded signal and the additive noise respectively and β is 

a sparse non-negative vector whose non-null entries are related 

to photon arrival times. Our objective is therefore to estimate λ
from (3) , and at first to find a sparse estimate of β, so that its 

non-zero entries provide relevant information on the active bins 

present in the signal. This sparse estimate is obtained by solving a 

non-negative version of the LASSO, that is 

̂ β(r) = arg min 

β≥0 

{ 

‖ y − A β‖ 

2 
2 + r‖ β‖ 1 

} 

. (4) 

Introduced in [14] , (4) provides a regressor ̂ β(r) whose sparsity is 

controlled by the parameter r (the larger, the sparser). Note than 

many alternatives to LASSO exist in the literature, e.g. the sparse 

Bayesian learning of Wipf and Nagarajan [15] or the reweighted 
 1 
basis pursuit procedure described in [16] . However, since the dic- 

tionary A has very correlated atoms, consistency in selection can- 

not be achieved by any of the aforementioned techniques. It can 

be seen in [6] that a non-negative LASSO behaves as well as the 

latter techniques for activity estimation, thus justifying our choice. 

Given a sparsity parameter r , and assuming that ̂ β(r) = 

[ ̂  β
T 

0 (r) , ̂  β
T 

1 (r) , . . . , ̂  β
T 

N−1 (r)] T has been computed (we refer to 

[17,18] for fast computation methods), the estimation of λ is per- 

formed by replacing a thresholded version of ̂ β(r) into a known 

estimate relying on the knowledge of the arrival times. It is shown 

in [8] that, in the case of a constant activity, the (scalar) λ can be 

effectively estimated as follows: 

ˆ λhpp (r, η) = − 1 

�t 
ln 

(
1 − 1 

N 

N−1 ∑ 

n =0 

1 (‖ ̂

 βn (r) ‖ 1 ≥ η) 
)
, (5) 

with η > 0 being a user-defined threshold, whereas for time- 

varying activities, the (functional) λ can be estimated in a non- 

parametric setting as 

ˆ λnhpp (t; r, η) = 

1 

h 

̂ M ∑ 

i =1 

W 

(
t − ̂ T i 

h 

)
, (6) 

where W is a standard kernel function integrating to 1 and 

h > 0 is a user-defined bandwidth parameter, and 

̂ T i = min { t n > ̂ T i −1 ; ̂ βn (r) > η, ̂  βn −1 (r) < η} , as in [8] . The necessity for a thresh- 

old η in both (5) and (6) can be understood from the poor con- 

sistency in selection of LASSO [19] , which holds under theoretical 

conditions often unfulfilled in practice. Therefore, only the most 

representative coefficients of ̂ β(r) must be selected, this done by 

adding an additional thresholding step. 

Obviously, (5) and (6) are conceptually different, since the first 

uses properties inherent to the homogeneity of the underlying 

Poisson process, and the second relies on a kernel function es- 

timate. However, it can be seen that both rely on a thresholded 

version of a non-negative LASSO regressor, thus, both depend on 

the parameter ( r, η), which must be carefully set up to ensure sat- 

isfactory results. In previous contributions, we provided efficient, 

rule-of-thumb criteria [8] as well as theoretical conditions [6,13] on 

both r and η which guarantee a satisfactory estimation of the 

activity, both in the homogeneous and non-homogeneous frame- 

works. However, the theoretical conditions are difficult to check in 

practice, and assume prior information on the radioactive source 

which may be unavailable [13] . Thus, fully automatic strategies for 

parameter settings remain to be investigated. 

2.2. Shortcomings of Cross-Validation 

One seemingly relevant strategy would be the use of Cross- 

Validation (CV) for the choice of η. This being said, a standard 

cross-validation on the threshold parameter (or on the joint pa- 

rameter ( r, η)) would not provide satisfactory results, since it 

would systematically yield a larger than expected choice of ( r, η). 

We present in Fig. 1 a comparison between the approximated MSE 

with full knowledge of λ and the leave-10-out cross validation 

function, estimated on 10 0 0 simulations in the homogeneous set- 

ting (that is, using Eq. (5)) . 
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