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a b s t r a c t 

In this paper, we propose an adaptive approach to estimate the energies of the wavelet and scale coef- 

ficients of the Haar wavelet transform used in the multifractal modeling of network traffic traces. Sim- 

ulation results confirm that the estimates obtained for the modeling parameters in the wavelet domain 

are precise. In addition, we propose an equation to calculate the autocorrelation function of the underly- 

ing multifractal model in terms of these wavelet domain parameters. In order to enhance the prediction 

performance of network traffic traces, the autocorrelation function is used to update orthonormal basis 

functions in a fuzzy system. To validate the adaptive fuzzy prediction approach, simulations with real 

network traffic traces are carried out, showing that the proposed algorithm provides lower mean square 

errors than other algorithms in the literature. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In the last decades, several studies have shown the importance 

of signal analysis using the wavelet transform due to its multiscale 

representation of signals [1–3] . 

One of the applications of wavelet transform is in network traf- 

fic modeling in order to describe behaviors such as long-range de- 

pendence and burst incidences at different time scales [4,5] . These 

characteristics may degrade network performance in relation to 

Gaussian and short-range dependence traffic flows [3,6] . 

The main multifractal models are based on multiplicative cas- 

cades, which are structures where an interval is divided randomly 

by multipliers, conserving the interval mass [3] . Thus, at the end 

of the division process, a correlated sequence is obtained, repre- 

senting the network traffic samples. As examples of wavelet do- 

main based multifractal models, we can cite: the Lognormal Beta 

[7] model and the MWM (Multifractal Wavelet Model) [3] . 

The MWM model consists of a multiplicative cascade in the 

Haar wavelet domain [8] , where multiplicative cascade multipli- 

ers are computed based on the signal energy decay. Although the 

MWM model being suitable for modeling network traffic, it re- 

quires the application of the wavelet transform to the whole traffic 

trace or to all samples in a time window that is intending to apply 

the model. In other words, in its original formulation, the MWM 
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does not update its parameters at each time instant that a traffic 

sample is provided. 

In order to achieve high utilization of resources in communi- 

cation networks and for better decision making, traffic prediction 

must be as accurate as possible. Fuzzy modeling is capable of pre- 

cisely representing a nonlinear complex processes such as network 

traffic traces through the combination of linear local models [9] . 

Moreover, adaptive prediction algorithms are the most appropri- 

ate for real time multimedia applications due to on-line process- 

ing capability. Taking these informations into account, we propose 

an adaptive fuzzy prediction algorithm that incorporates a wavelet 

domain modeling of network traffic. 

More specifically, in this paper we propose equations that al- 

low us to compose an algorithm to adaptively estimate the energy 

decay of wavelet coefficients for network traffic modeling. Also, we 

propose an equation for the autocorrelation function of the wavelet 

domain based traffic model in order to obtain orthonormal basis 

functions for a TSK (Takagi-Sugeno-Kang) adaptive fuzzy system to 

predict network traffic samples. 

2. Adaptive wavelet domain multifractal modeling 

The Multifractal Wavelet Model (MWM) is based on a multi- 

plicative cascade in the wavelet domain for network traffic model- 

ing. The βMWM is a variation of the MWM where the beta distri- 

bution is used as the probability density of the cascade multipliers 

[3] . 

The MWM modeling process consists of computing the discrete 

Haar wavelet transform [8] for a fixed number of scales J of the 

https://doi.org/10.1016/j.sigpro.2018.04.026 

0165-1684/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.sigpro.2018.04.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.04.026&domain=pdf
mailto:alsnac@gmail.com
mailto:flavio@emc.ufg.br
https://doi.org/10.1016/j.sigpro.2018.04.026


156 A .A . Cardoso, F.H.T. Vieira / Signal Processing 151 (2018) 155–159 

traffic trace [3] . From the Haar wavelet transform, the wavelet W j, i 

and scale U j, i coefficients are obtained for each scale j , where 0 ≤
j ≤ J − 1 . 

According to [3] , the wavelet coefficients are generated by 

W j,i = U j,i A j,i , where A j, i is a random variable with the symmetric 

beta distribution β( p j , p j ) and p j is the parameter that determines 

the beta distribution shape. The multipliers A j, i are selected in or- 

der to control the energy decay of the wavelet coefficients W j−1 ,i , 

by the parameters p j given as follows [3] : 

n j = 

E(W 

2 
j−1 ,i 

) 

E(W 

2 
j,i 
) 

= 

2 p j + 1 

p j−1 + 1 

(1) 

In order to adaptively estimate the wavelet and scale coeffi- 

cients without applying the Haar wavelet transform to the entire 

traffic trace, we present three propositions. The first one consists in 

the estimation of the values of the average energies of the wavelet 

coefficients E[ W 

2 
j,i 

] with the knowledge of E[ U 

2 
j,i 

] . 

Proposition 1. Let E[ U 

2 
j,i 

] and E[ U 

2 
j+1 ,i 

] be the average energy of the 

scale coefficients on scales j and j + 1 respectively. The average energy 

E[ W 

2 
j,i 

] of the coefficients can be calculated by the following equation: 

E[ W 

2 
j,i ] = 2 E[ U 

2 
j+1 ,i ] − E[ U 

2 
j,i ] j = 0 , . . . , J − 2 (2) 

Proof. The sum of the average energies of the wavelet and scale 

coefficients can be written as: 

E[ W 

2 
j,i ] + E[ U 

2 
j,i ] = 

1 

N/ 2 

l 

N/ 2 l −1 ∑ 

i =0 

[
W 

2 
j,i + U 

2 
j+1 , 2 i 

]
(3) 

Replacing the wavelet and scale coefficients by those of the 

scale j + 1 , that is, U j,i = (1 / 
√ 

2 ) · (U j+1 , 2 i + U j+1 , 2 i +1 ) and W j,i = 

(1 / 
√ 

2 ) · (U j+1 , 2 i − U j+1 , 2 i +1 ) [8,10] , we have: 

SUM = 

(
U j+1 , 2 i + U j+1 , 2 i +1 √ 

2 

)2 

+ 

(
U j+1 , 2 i − U j+1 , 2 i +1 √ 

2 

)2 

(4) 

where SU M = 

∑ N/ 2 l −1 
i =0 

W 

2 
j,i 

+ U 

2 
j+1 , 2 i 

. 

Simplifying (4) , we have: 

E[ W 

2 
j,i ] + E[ U 

2 
j,i ] = 

1 

N/ 2 

l 

N/ 2 l −1 ∑ 

i =0 

U 

2 
j+1 ,i (5) 

The right-hand side of (5) is equivalent to 2 E[ U 

2 
j+1 ,i 

] . Thus, iso- 

lating E[ W 

2 
j,i 

] , we obtain (2) , as we shall demonstrate. �

In order to adaptively estimate E[ W 

2 
J−1 ,i 

] for the average energy 

of the high order scale coefficient J − 1 , we present the following 

proposition: 

Proposition 2. Let X ( k ) be a discrete signal representing a traffic flow 

in the time instant k. The average energy E[ W 

2 
J−1 ,i 

] of highest order 

scale can be adaptively calculated by the following equation: 

E [ W 

2 
J−1 ,i ] k +1 = 

⎧ ⎨ 

⎩ 

E [ W 

2 
J−1 ,i 

] k , mod (k + 1 , 2) � = 0 

(k − 1) 

2(k + 1) 
E [ W 

2 
J−1 ,i 

] k + 

(X (k ) − X (k + 1)) 2 

(k + 1) 
, o/w 

(6) 

Proof. The Haar wavelet coefficients W J−1 ,i of the highest order 

scale J − 1 can be given by the difference of two sample values of 

the process X ( k ) [8] . Thus, the average energy at instant k of the 

Haar wavelet coefficients W J−1 ,i can be obtained through the aver- 

age of every two samples from the process X ( k ) by the following 

equation: 

E[ W 

2 
J−1 ,i ] k = 

1 

� k/ 2 � 
� k/ 2 � ∑ 

i =0 

( X (k ) − X (k + 1) ) 
2 

2 

(7) 

For k + 1 , equation (7) can be rewritten as: 

E[ W 

2 
J−1 ,i ] k +1 = 

1 

(k + 1) 

(k +1) / 2 ∑ 

i =0 

( X (k ) − X (k + 1) ) 
2 

(8) 

Replacing E[ W 

2 
J−1 ,i 

] k −1 into (8) , we obtain the following equa- 

tion: 

E [ W 

2 
J−1 ,i ] k +1 = 

⌊
(k −1) 

2 

⌋
(k + 1) 

E [ W 

2 
J−1 ,i ] k −1 + 

(X (k ) − X (k + 1)) 2 

(k + 1) 
(9) 

Equation (9) provides a recursive estimation of the average en- 

ergy of the wavelet coefficients in function of two samples of 

the process X ( k ). We also have mod((k − 1) , 2) = 0 and mod (k + 

1 , 2) = 0 , E[ W 

2 
J−1 ,i 

] k = E[ W 

2 
J−1 ,i 

] k −1 . Thus, we obtain (6) , as we shall 

demonstrate. �

Now, we propose an equation for the average energy of the 

scaling coefficients U j, i since it is required in (2) . 

Proposition 3. Let X ( k ) be a discrete time process and E[ X(k + 1)] 

be its average. The average energy of the scale coefficients E[ U 

2 
j,i 

] on 

the jth scale can be adaptively calculated by the following equation: 

E[ U 

2 
j,i ] k +1 = 

⌊
k 

2 (J− j ) 
⌋

⌊
(k +1) 
2 (J− j) 

⌋M U + 

(X (k + 1) + δ) 2 ⌊
(k +1) 
2 (J− j) 

⌋
2 

(J− j) 
(10) 

where 

M U = 

{
E[ U 

2 
j,i 

] k +1 , if mod (k + 1 , 2 

(J− j) ) = 0 

M U , if mod (k + 1 , 2 

(J− j) ) � = 0 

(11) 

and 

δ = (2 

j − mod(k, 2 

j ) + 1) E[ X (k + 1)] (12) 

Proof. The Haar transform of a process can be obtained by a re- 

cursive procedure [8] . The first-level scale coefficients U J−1 ,i corre- 

spond to the sum of the sequence of two samples of X ( k ) divided 

by 
√ 

2 . The second level scale coefficients U J−2 ,i is equivalent to the 

sum of the sequence of 4 samples of X ( k ) divided by 
√ 

4 and so on. 

Then, a general expression for U j, i can be written as: 

U j,i = 

1 √ 

2 

(J− j) 

i 2 j +2 (J− j) −1 ∑ 

t= i 2 j 
X (k ) (13) 

Let U j be the vector containing all the U j, i of scale j , which de- 

notes the network traffic trace aggregated in scale m = 2 J− j . Then, 

it can be stated that E[ U 

2 
j,i 

] k is the average of the second moment 

of the traffic trace X ( k ) aggregated in the scale m , at the instant of 

time k = n · m, that is: 

E[ U 

2 
j,i ] k = 

1 

� k/m � 
� k/m � ∑ 

t=0 

(X 

m 

t ) 2 

2 

(J− j) 
(14) 

where X m 

t represents the process X ( k ) aggregated in the scale m . 

The value of E[ U 

2 
j,i 

] k for a time instant before it is completed 

a new window can be given by the average energy value in the 

previous window plus δ. The variable δ represents the number of 

remaining samples of X ( k ) to a complete time window at instant k . 

Thus, we have: 

E[ U 

2 
j,i ] k +1 = 

∑ 

⌊ 
k 

2 (J− j) 

⌋ 
t=0 

[ 
(X m t ) 2 

2 (J− j) + 

(X(k +1)+ δ) 2 

2 (J− j) 

] 
⌊

(k +1) 
2 (J− j) 

⌋ (15) 
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