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a b s t r a c t

We consider the classic problem of pole placement by state feedback. We offer an eigenstructure
assignment algorithm to obtain a novel parametric form for the pole-placing feedback matrix that
can deliver any set of desired closed-loop eigenvalues, with any desired multiplicities. This parametric
formula is then exploited to introduce an unconstrained nonlinear optimisation algorithm to obtain a
feedback matrix that delivers the desired pole placement with optimal robustness and minimum gain.
Lastly we compare the performance of our method against several others from the recent literature.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

We consider the classic problem of repeated pole placement for
linear time-invariant (LTI) systems in state space form
ẋ(t) = A x(t) + B u(t), (1)
where, for all t ∈ R, x(t) ∈ Rn is the state and u(t) ∈ Rm is
the control input. We assume that B has full column-rank and that
the pair (A, B) is reachable. We let L = {λ1, . . . , λν} be a self-
conjugate set of ν ≤ n complex numbers, with associated algebraic
multiplicitiesM = {m1, . . . ,mν} satisfyingm1+· · ·+mν = n, and
mi = mj whenever λi = λj. The problem of exact pole placement
(EPP) by state feedback is that of finding a real feedback matrix F
such that
(A + B F) X = X Λ, (2)
whereΛ is an n×n Jordanmatrix obtained from the eigenvalues of
L, including multiplicities given by M, and X is a matrix of closed-
loop eigenvectors of unit length. The matrix Λ can be expressed in
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the Jordan (complex) block diagonal canonical form

Λ = blkdiag(J(λ1), . . . , J(λν)), (3)

where each J(λi) is a Jordan matrix for λi of order mi and may be
composed of up to gi mini-blocks

J(λi) = blkdiag(J1(λi), . . . , Jgi(λi)), (4)

where 1 ≤ gi ≤ m. We use P
def
= {pi,k | 1 ≤ i ≤ ν, 1 ≤

k ≤ gi} to denote the order of each Jordan mini-block Jk(λi); then
pi,k = pj,k whenever λi = λj. When (A, B) is reachable, arbitrary
multiplicities of the closed-loop eigenvalues can be assigned by
state feedback, but the possible mini-block orders of the Jordan
structure of A + BF are constrained by the controllability indices
(Rosenbrock, 1970). If L, M and P satisfy the conditions of the
Rosenbrock theorem, we say that the triple (L, M, P ) defines an
assignable Jordan structure for (A, B).

In order to consider optimal selections for the feedback matrix,
it is important to have a parametric formula for the set of feedback
matrices that deliver the desired pole placement. In Kautsky,
Nichols, and van Dooren (1985) and Schmid, Pandey, and Nguyen
(2014) parametric forms are given for the case where Λ is a
diagonal matrix and the eigenstructure is non-defective; this
requires mi ≤ m for all mi ∈ M. Parameterisations that do not
impose a constraint on the multiplicity of the eigenvalues to be
assigned include Bhattacharyya and de Souza (1982); Fahmy and
O’Reilly (1983); however these methods require the closed-loop
eigenvalues to all be distinct from the open-loop ones.
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The general case where L contains any desired closed-loop
eigenvalues and multiplicities is considered in Ait Rami, Faiz,
Benzaouia, and Tadeo (2009) and Chu (2007), where parametric
formulae are provided for F that use the eigenvector matrix X as
a parameter. Maximum generality in these parametric formulae
has however been achieved at the expense of efficiency, as the
square matrix X has n2 free parameters. By contrast, methods
(Bhattacharyya & de Souza, 1982; Fahmy & O’Reilly, 1983; Kautsky
et al., 1985; Schmid et al., 2014) all employ parameter matrices
withmn free parameters.

The first aim of this paper is to offer a parameterisation for the
pole-placing feedback matrix that combines the generality of Ait
Rami et al. (2009) and Chu (2007) with the efficiency of an mn-
dimensional parameter matrix. We offer a parametric formula for
all feedback matrices F solving (2) for any assignable (L, M, P ).
For a given parameter matrix K , we obtain the eigenvector matrix
XK and feedback matrix FK by building the Jordan chains from
eigenvectors selected from the kernels of the matrix pencils [A −

λi In B] and thus avoid the need for matrix inversions, or the
solution of Sylvester matrix equations. The parameterisation will
be shown to be exhaustive of all feedback matrices that assign the
desired eigenstructure.

The second aim of the paper is to seek the solution to some
optimal control problems. We first consider the robust exact pole
placement problem (REPP), which involves obtaining F that renders
the eigenvalues of A+B F as insensitive to perturbations in A, B and
F as possible. Numerous results (Chatelin, 1993) have appeared
linking the sensitivity of the eigenvalues to various measures of
the condition number of X . Another commonly used robustness
measure is the departure from normality of the closed loop matrix
A + B F . For the case of diagonal Λ, there has been considerable
literature on the REPP, including Ait Rami et al. (2009), Byers and
Nash (1989), Chu (2007), Kautsky et al. (1985), Li, Chu, and Lin
(2011), Schmid et al. (2014), Tits andYang (1996) andVarga (2000).
Papers considering the REPP for the general case where (L, M, P )

defines an assignable Jordan structure includeAit Rami et al. (2009)
and Lam, Tam, and Tsing (1997).

A related optimal control problem is the minimum gain exact
pole placement problem (MGEPP), which involves solving the EPP
problem and also obtaining the feedback matrix F that has the
least gain (smallest matrix norm), which gives a measure of the
control amplitude or energy required by the control action. Recent
papers addressing theMGEPPwithminimumFrobenius norm for F
include Ataei and Enshaee (2011) and Kochetkov and Utkin (2014).

In this paper we utilise our parametric form for the matrices
X and F that solve (2) to take a unified approach to the REPP
and MGEPP problems, for any assignable Jordan structure. In
our first method for the REPP, we seek the parameter matrix
K that minimises the Frobenius condition number of X . In our
second approach to the REPP, we seek the parameter matrix that
minimises the departure from normality of matrix A + BF . Next
we address the MGEPP by seeking the parameter K that minimises
the Frobenius norm of F . Finally, we combine these approaches by
introducing an objective function expressed as a weighted sum of
robustness and gain measures, and use gradient iterative methods
to seek a local minimum.

The performance of the our algorithmwill be compared against
the methods of Ait Rami et al. (2009), Ataei and Enshaee (2011)
and Li et al. (2011) on a number of sample systems. We see
that the methods introduced in this paper can achieve superior
robustness while using less gain than all three of these alternative
methods.

2. Arbitrary pole placement

Here we adapt the algorithm of Klein and Moore (1977) to
obtain a simple parametric formula for the gain matrix F that
solves the exact pole placement problem for an assignable Jordan
structure (L, M, P ), in terms of an arbitrary parameter matrix K
with mn free dimensions. We begin with some definitions.

Given a self-conjugate set of ν complex numbers {λ1, . . . , λν}

containing σ complex conjugate pairs, we say that the set is σ -
conformably ordered if the first 2 σ values are complex while the
remaining are real, and for all odd i ≤ 2 σ we have λi+1 = λi. For
example, the set {10 j, −10 j, 2 + 2 j, 2 − 2 j, 7} is 2-conformably
ordered. For simplicity we shall assume in the following that L is
σ -conformably ordered.

If M is a complex matrix partitioned into ν column matrices
M = [M1 . . .Mν], we say that M is σ -conformably ordered if the
first 2 σ column matrices of M are complex while the remaining
are real, and for all odd i ≤ 2 σ we have Mi+1 = M i. For a σ -
conformably ordered complex matrix M , we define a real matrix
Re(M) composed of ν column matrices of the same dimensions as
those of M thus: for each odd i ∈ {1, . . . , 2σ }, the ith and i + 1-
st column matrices of Re(M) are 1

2 (Mi + Mi+1) and 1
2j (Mi − Mi+1)

respectively, while for i ∈ {2σ + 1, . . . , ν}, the column matrices
of Re(M) are the same as the corresponding column matrices of
M . For any real or complex matrix X with n + m rows, we define
matrices π(X) and π(X) by taking the first n and last m rows of X ,
respectively. For each i ∈ {1, . . . , ν}, we define the matrix pencil

S(λi)
def
=


A − λi In B


. (5)

We use Ni to denote an orthonormal basis matrix for the kernel of
S(λi). If λi+1 = λi, then Ni+1 = N i. Since each S(λi) is n × (n + m)
and (A, B) is reachable, each kernel has dimensionm. We let

Mi
def
=


A − λi In B

Ď
, (6)

where Ď indicates the Moore–Penrose pseudo-inverse. For any
matrix X we use X(l) to denote the l-th column of X .

We say that a matrix K is a compatible parameter matrix for
(L, M, P ), if K def

= blkdiag{K1, . . . , Kν}, where each Ki has
dimension m × mi, and for each i ≥ 2 σ , Ki is a real matrix, and
for all odd i ≤ 2 σ , we have Ki+1 = K i. Then each Ki matrix may be
partitioned as

Ki =

Ki,1 Ki,2 · · · Ki,gi


, (7)

where each Ki,k has dimension m × pi,k. For i ∈ {1, . . . , ν} and
k ∈ {1, . . . , gi} we build vector chains of length pi,k as

hi,k(1) = Ni Ki,k(1), (8)

hi,k(2) = Mi π{hi,k(1)} + Ni Ki,k(2), (9)
...

hi,k(pi,k) = Mi π{hi,k(pi,k − 1)} + Ni Ki,k(pi,k). (10)

From these column vectors we construct the matrices

Hi,k
def
= [hi,k(1) . . . hi,k(pi,k)] (11)

of dimension (n + m) × pi,k, and

Hi
def
= [Hi,1 . . .Hi,gi ], HK

def
= [H1 . . .Hν], XK

def
= π{HK } (12)

of dimension (n + m) × mi, (n + m) × n and n × n, respectively.
Note that HK is σ -conformably ordered, and hence we may define
real matrices

VK
def
= π{Re(HK )}, WK

def
= π{Re(HK )} (13)

of dimensions n × n andm × n, respectively. We are now ready to
present the main result of this paper.
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