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a b s t r a c t 

This paper considers parameter estimation of a new coupled mixture of polynomial phase signal (PPS) 

and sinusoidal frequency modulated (FM) signal, recently introduced for industrial systems such as linear 

electromagnatic encoders. Compared with both conventional PPS-only and independent mixture mod- 

els, the coupled mixture one captures the coupling between the sinusoidal FM frequency and the PPS 

parameters induced by structural system configurations. In this paper, we are particularly interested in 

estimating phase parameters of the coupled mixture signal at low signal-to-noise ratios (SNRs). Specifi- 

cally, we propose a three-stage approach consisting of instantaneous frequency (IF) extraction (e.g., the 

short-time Fourier transform) and refining steps that reduce the bias introduced by the IF estimation and 

the mean-squared errors (MSEs) up to the Cramér-Rao bound (CRB). The proposed method is numeri- 

cally compared with an existing phase-based approach as well as corresponding CRBs in terms of the 

empirical MSE. The results show that, compared with the phase-based approach, the proposed method 

can significantly lower the SNR threshold. The convergence of the measured MSEs from the initial stage 

to the latter refining stages is also numerically evaluated. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Parameter estimation of pure polynomial phase signals (PPSs) 

from a finite number of samples is a fundamental problem in 

many applications, including radar, sonar, communications, acous- 

tics and optics [1–17] . A generalized signal model is an independent 

mixture of PPS and sinusoidal frequency modulated (FM) signal re- 

ferred to as the hybrid sinusoidal FM-PPS [18–23] . One motivation 

for studying this kind of signal comes from Doppler radar systems. 

When a target is moving in a dynamic motion, the resulting signal 

can be modeled as the pure PPS with parameters associated to the 

kinematic target parameters. For instance, the initial velocity and 

acceleration are proportional to the first- and second-order phase 

parameters, respectively. On the other hand, rotating parts (e.g., 

rotating blades of a helicopter) and target vibration introduce the 

sinusoidal FM component [18–20] . With both effects, the matched 

filter outputs follow the independent mixture signal model. 
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Motivated by real-world applications, e.g., contactless electro- 

magnetic (EM) encoders, a new coupled mixture model of the 

PPS and sinusoidal FM signal is proposed in [24] . Specifically, the 

coupling is introduced to express the sinusoidal FM frequency as 

a function of the PPS parameters. The Cramér-Rao bounds (CRB) 

for parameter estimation has been established in the same paper. 

Compared with the independent mixture model, the coupled one 

can lead to lower bounds for estimating the motion-related PPS 

parameters as the coupled sinusoidal FM frequency provides ad- 

ditional inference for the PPS parameters. As a first attempt, Wang 

et al. [25] proposed an instantaneous phase-based method using 

a phase unwrapping technique followed by a nonlinear coupled 

least square method, referred to as the PULS. It was shown that 

the PULS method is unbiased and its estimation performance 

can approach to the CRB at relatively high signal-to-noise ratio 

(SNR). However, the PULS method exhibits a high SNR threshold 

1 

especially for a small number of samples. 

In this paper, a parameter estimation method is proposed for 

the coupled mixture signal at low SNRs. Specifically, we propose 

1 The SNR threshold is defined as an SNR value below which the mean-squared 

error (MSE) of the parameter estimate rapidly deviates from the CRB. 
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Fig. 1. The flowchart of the phase-based PULS method in [25] . 

a three-stage approach which features an instantaneous frequency 

(IF) extraction by using the short-time Fourier transform (STFT) 

and refining stages to reduce the estimation bias introduced by the 

initial step and to further push the MSEs towards the CRBs. More- 

over, the proposed method is extended to the coupled mixture 

signal with aliasing spectrum. Further, it is numerically compared 

with the PULS method via extensive Monte-Carlo simulations. We 

also show the convergence of the MSEs towards corresponding 

CRBs when the proposed method moves from the initial stage to 

the latter refining stages. 

The remainder of this paper is organized as follows. 

Section 2 reviews a specific application which motivates the 

study of the coupled mixture model, defines the mathematical 

model, and formulates the problem of interest. Section 3 briefly 

overviews existing parameter estimation methods and established 

CRBs. The proposed estimator is introduced in details in Section 4 . 

Numerical examples and performance comparisons are provided 

in Section 5 , followed by a summary in Section 6 . 

2. A coupled mixture signal model 

This section reviews a specific application that motivates the 

study of the coupled mixture model and compares it with two 

existing PPS models. 

2.1. Linear EM encoders 

Accurate speed sensing is highly desired in contactless encoder 

systems used for motion/position monitoring. Among others, 

optical, electric, magnetic and EM encoders are commonly used 

in applications such as auto-tuning drives, smart conveyors, and 

kit motors [26–30] . Compared with other types of encoders, EM 

encoders may provide robust sensing capability of position and 

motion in harsh operating environments, e.g., moisture, heat, 

vibration and smoke. 

Referring to Fig. 1 of [24] , the EM encoder normally consists 

of a stationary scale and a moving readhead, or vice versa. The 

source transceivers are mounted on the moving readhead with a 

distance of r to the scale platform. Uniformly spaced reflectors, e.g., 

rectangular bars, are installed on the scale platform to constitute 

a spatial period with an inter-reflector spacing of h . The position 

encoding is achieved by observing the same reflected EM signals 

at two spatial positions which are separated with a distance of h . 

Finer position encoding is enabled by detecting the phase changes 

of two spatial positions (with a distance change less than h ) with 

respect to a full radian period of 2 π (corresponding to a distance 

change of h ). Generally, the baseband signals reflected from the 

spatially periodic linear scale can be written as 

x (d) = Ae 
j2 π

[
d 
h 
+ 

M ∑ 

m =1 

b m sin ( 2 πmd 
h 

+ φm ) + ψ 0 

]
, (1) 

where A is the unknown amplitude, d is the axial position index 

of the moving readhead, b m 

> 0 and φm 

are the modulation index 

and, respectively, the initial phase of the m -th sinusoidal FM 

component, M is the number of sinusoidal FM components in the 

phase, and ψ 0 is the initial phase. The first phase term is due to 

the phase change proportional to the inter-reflector spacing of h . 

Meanwhile, the second term is, induced by the spatially periodic 

reflectors, the motion-related sinusoidal FM component. From (1) , 

we have x (d) = x (d + lh ) , where l is an integer. That is the moving 

readhead sees exactly the same reflected waveforms at two axial 

positions which are at a distance of h apart from each other. 

With a sampling interval of �T and assuming that the read- 

head moves at an initial velocity of v 0 and an acceleration of a , 

we can transform the position index to the discrete-time index via 

d = v 0 t + at 2 / 2 | t= n �T = v 0 n �T + a (n �T ) 2 / 2 , n = n 0 , · · · , n 0 + N −
1 with n 0 and N denoting the initial sampling index and the num- 

ber of total samples, respectively. As a result, the discrete-time re- 

flected signal for the constantly accelerating readhead is given as 

x (n ) = Ae 
j2 π

[ 
v 0 n �T + a (n �T ) 2 / 2 

h 
+ ψ 0 

] 

×e 
j 

M ∑ 

m =1 

2 π
[ 

b m sin 

(
2 πm 

v 0 n �T + a (n �T ) 2 / 2 

h 
+ φm 

)] 
. (2) 

Note that the sinusoidal FM frequency is now a function of the 

motion-related phase parameter (e.g., v 0 and a ) of the moving 

readhead. 

2.2. The coupled mixture of PPS and sinusoidal FM signal 

For more dynamic motions of the readhead, higher-order phase 

terms may appear in the reflected signal. For instance, if the accel- 

eration is time-varying, a third-order phase term (on t 3 ) may be 

required to model the reflected signal, i.e., d = v 0 t + at 2 / 2 + gt 3 / 6 

where g denotes the acceleration rate. To generalize the model, a 

coupled mixture of the PPS and sinusoidal FM signal is defined as: 

x (n ) = Ae 
j2 π

[
P ∑ 

p=0 

a p n 
p 

p! + 
M ∑ 

m =1 

b m sin (2 πm f 0 (n ;a ) n + φm ) 

]
, (3) 

where the fundamental sinusoidal FM frequency f 0 is now coupled 

with the PPS phase parameters a � = [ a 1 , · · · , a P ] 
T , except the initial 

phase term a 0 . Depending on applications, the coupling function 

f 0 ( n ; a ) can be either nonlinear or linear with respect to { a p } P p=1 
. In 

the case of linear encoders, we have f 0 (n ; a ) = c 0 
∑ P 

p=1 a p n 
p−1 /p! 

with c 0 denoting a known scaling factor. 

To see how the above example of linear EM encoders fits into 

the coupled mixture of (3) , we can establish the following variable 

changes between (2) and (3) 

b m 

= b m 

, a 0 = ψ 0 , a 1 = 

v 0 �T 

h 

, a 2 = 

a (�T ) 2 

h 

, 

f 0 (n ; a ) = 

v 0 �T 

h 

+ 

a (�T ) 2 

h 

n/ 2 = c 0 (a 1 + a 2 n/ 2) , (4) 

with c 0 = 1 , a = [ a 1 , a 2 ] 
T , and the PPS order of P = 2 . 

2.3. Comparison of signal models 

The coupled mixture model given by (3) is distinct from the 

independent mixture model [18–22] 

x (n ) = Ae 
j2 π

[
P ∑ 

p=0 

a p n 
p 

p! + 
M ∑ 

m =1 

b m sin (2 πm f 0 n + φm ) 

]
, 
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