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a b s t r a c t 

In distributed estimation, the mean-square error (MSE) criterion has been extensively studied. When 

complex-valued signals are involved, the additive noise can present different degrees of non-circular 

properties. The MSE criterion can be optimal only when the error signal is circular, and may not per- 

form well for non-circular error signal. To improve the performance, we present a new diffusion adaptive 

strategy using the Gaussian entropy criterion as the cost function. Complex-valued Gaussian entropy was 

early introduced for linear and widely linear filtering. Unfortunately, the closed-form solution based on 

Gaussian entropy was not obtained due to the nonlinearity of the entropy equation. In this paper, we 

derive a closed-form solution based on Gaussian entropy for linear and widely linear filters, and pro- 

vide mean value steady and mean-square performance analysis for the network in detail. Our theoretical 

analysis demonstrates that the steady-state error approaches zero when the additive noise is maximally 

non-circular. The simulations demonstrate that the proposed method outperforms the MSE criterion for 

non-circular noise. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Distributed estimation derives from good examples of real-time 

learning and adaptation behavior, and it plays a key role in in- 

network signal processing. Compared with centralized estimation, 

it only uses local data cooperation between neighbor nodes to in- 

crease robustness and reduce complexity [1–13] . Distributed esti- 

mation is commonly used in many contexts, such as the forag- 

ing behavior of animals [14] , distributed detection [15] and target 

tracking and escaping from predators [16] . The algorithms based 

on different cooperation rules include diffusion least mean square 

(LMS) [1–17] , asynchronous diffusion adaptation [18] , incremen- 

tal LMS [19] , diffusion Kalman filtering [20,21] , diffusion recursive 

least square (RLS) [22] , distributed sparse RLS [23] , diffusion aug- 

mented complex LMS for non-circular complex signals [24] , min- 

imization of complex-error entropy for complex-valued filtering 

[25] and diffusion information theoretic learning [26] . Among the 

algorithms, the mean-square error (MSE) criterion is commonly 

used. 

When complex-valued signals are involved in real-world ap- 

plications, they can present different degrees of non-circularity 

(DNC) properties. Complex-valued signals are typically character- 
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ized by their second-order statistical (SOS) properties [27–35] . The 

SOS is represented by the conventional covariance matrix and the 

pseudo-covariance matrix, which characterizes the improperness of 

the signal. The MSE criterion is optimal only when the error signal 

is circular, and may perform poorly for non-circular error signal. 

To overcome this drawback, complex-valued Gaussian entropy was 

introduced in [31,32] for linear and widely linear filtering, and the 

DNC of the error can be taken into account. 

It was shown in [25] that the performance of the network de- 

pends on the DNC of the complex signal. This motivates us to 

introduce the Gaussian entropy criterion into the complex-valued 

network. 

The simulations in [31] demonstrated the following: 

1) for a linear filter, the entropy criteria always outperform the 

MSE with non-circular additive noise; and 

2) for a widely linear filter, the MSE and entropy criteria have the 

same performance with non-circular additive noise. 

However, there was no theoretical explanation for the two phe- 

nomena because a closed-form solution based on Gaussian entropy 

was not obtained in [31] due to the nonlinearity of the entropy 

equation. If a closed-form solution is given, we can apply the en- 

tropy criteria to the network robustly. 

Since it is difficult to obtain the closed-form solution of Gaus- 

sian entropy, we turn to solve the real and imaginary parts of the 

closed-form solution. In this paper, we derive a closed-form solu- 

https://doi.org/10.1016/j.sigpro.2018.03.003 

0165-1684/© 2018 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.sigpro.2018.03.003
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2018.03.003&domain=pdf
mailto:wanggang_hld@uestc.edu.cn
mailto:xuerui@buaa.edu.cn
mailto:gong_junjie34@163.com
https://doi.org/10.1016/j.sigpro.2018.03.003


G. Wang et al. / Signal Processing 149 (2018) 124–134 125 

tion based on Gaussian entropy for the linear and widely linear 

filters, and determine the following: 

1) for a linear filter, the mean-square deviance (MSD) decreases 

with an increase of the DNC of additive noise under the same 

signal-to-noise ratio (SNR), and approaches zero when all addi- 

tive noise is maximally non-circular under different SNRs; and 

2) for a widely linear filter, the solution based on Gaussian en- 

tropy is equivalent to the solution based on the MSE. 

Then we introduce complex-valued Gaussian entropy as the 

cost function for the multi-sensor network to process non-circular 

noise. The Gaussian entropy performance’s dependence on the DNC 

is studied. The DNC is the absolute value of the circularity coeffi- 

cient (CC) [31] , which works in the gradient of Gaussian entropy. 

The selection of the CC plays a key role in the performance of the 

iteration. The estimation of the CC is introduced during the itera- 

tions. It can be expected that Gaussian entropy criteria can achieve 

better performance than the traditional LMS algorithm for a net- 

work with non-circular noise. 

The paper is organized as follows: In Section 2 , the prob- 

lem statement is explained, including two types of gradient pro- 

cess. In Section 3 , the closed-form solution for Gaussian entropy 

is proposed. In Section 4 , a novel distributed adaptive methodol- 

ogy is presented that relies on cooperative diffusion protocols. In 

Section 5 , the mean value stability and mean-square performance 

of the integrated adaptive network are analyzed. The simulation 

results are presented in Section 6 and the conclusion is presented 

in Section 7 . 

To help the analysis, the superscript ∗ denotes a complex conju- 

gate, and superscripts T and H denote the transpose and conjugate 

transpose, respectively. 

2. Problem statement 

For a zero mean complex random variable x = x R + j x I , we have 

the following definitions. 

Definition 1. ( Simply circular ) If x and x exp( j θ ) have the same 

probability density function (PDF) for −π ≤ θ < π , then the com- 

plex random variable x is called simply circular or strictly circular. 

Definition 2. ( Second-order circular ) If E{ x 2 } = 0 , where x is zero 

mean, then x is called second-order circular. 

Definition 3. ( Degree of non-circularity (DNC) ) The DNC of a com- 

plex random variable x is defined as the index | ρ| [31] : 

| ρ| = 

∣∣E {x 2 
}∣∣

E 
{| x | 2 } , (1) 

where x is zero mean and 0 ≤ | ρ| ≤ 1. 

Definition 4. ( Circularity coefficient (CC) ) The CC of the complex 

random variable x is defined as 

ρ = 

E 
{

x 2 
}

E 
{| x | 2 } , (2) 

where x is zero mean and 0 ≤ | ρ| ≤ 1. 

Remark 1. The CC ρ equals zero for a circular signal and differs 

from zero for a non-circular signal. For Gaussian processes, the 

second-order circularity implies strict circularity, and a zero mean 

random vector x is second-order circular when E{ x x T } = 0 . 

Consider a network of N nodes distributed over a spatial re- 

gion (see Fig. 1 ). Each node k has access to its time series { d k ( i ) , 

u k ( i )} , k = 1, 2, …, N . Two nodes are neighbors when they can share 

data. Let N k denote the neighborhood of node k . There is an un- 

known vector w 

o ∈ C 

M at each node k to estimate the temporal 

Fig. 1. Distributed network with N active nodes accessing space-time data. 

wide-sense stationary measurements. d k ( i ) and u k ( i ) over time i ≥ 0 

are assumed to obey the traditional model [6] : 

d k ( i ) = u k (i ) w 

o + v k ( i ) , 

u k (i ) = [ u k (i ) u k (i − 1) · · · u k (i − M + 1) ] , 

w 

o = [ w 1 w 2 · · · w M 

] 
T 
, 

(3) 

where d k (i ) ∈ C 

1 is the desired signal, u k (i ) ∈ C 

1 ×M is the regres- 

sion row vector and v k ( i ) is zero mean background noise with vari- 

ance σ 2 
v ,k . 

In this research, the following assumptions are made: 

A1) Additive noise is a white process, that is, E{ v k (i ) v l ( j) } = 

E{ v k (i ) v ∗
l 
( j) } = { 0 , k � = l 

0 , k = l, j � = i 

A2) The inputs of different nodes u k ( i ) are spatially and temporally 

independent, that is E{ u 

k 
(i ) u 

H 
l 
( j) } = 0 for j � = i and k � = l . 

A3) The inputs of all the nodes and additive noise are uncorrelated, 

that is, E{ u 

k 
(i ) v l ( j) } = E{ u 

∗
k 
(i ) v l ( j) } = 0 . 

The above assumptions are customary in the context of adap- 

tive filters [3,31] , and are in fact required to simplify the analysis. 

It is important to highlight that, although assumptions A1 and A3 

can generally be considered strong in practice, assumption A2 is 

often weak particularly in networks where the sensors are close to 

each other. This characteristic must be carefully taken into account 

when the proposed expressions are used for analysis purposes. 

2.1. MSE criterion 

When noise v k ( i ) is circular, the unknown parameter of interest 

w 

o can be estimated by minimizing the MSE cost function [1,5] : 

J MSE ( w ) = 

N ∑ 

k =1 

E | e k ( i ) | 2 = 

N ∑ 

k =1 

E 
{

e k ( i ) e 
∗
k ( i ) 

}
, 

e k ( i ) = d k ( i ) − u k (i ) w k ( i ) , 

(4) 

where w k ( i ) is the estimate for w 

o at node k at time i . The gradient 

of the MSE is given by 

∂ J LMS 

∂ w 

∗ = −
N ∑ 

k =1 

E 
{

e k u 

H 
k 

}
. (5) 

At the stationary point, we have 
∑ N 

k =1 E{ e k u 

H 
k 
} = 0 and the opti- 

mal solution [3] : 

w 

o = 

[
N ∑ 

k =1 

R u,k 

]−1 [
N ∑ 

k =1 

R du,k 

]
, 

R u,k = E 
{

u 

H 
k 
(i ) u k (i ) 

}
, 

R du,k = E 
{

d k,i u 

H 
k 
(i ) 
}
. 

(6) 

A simple adaptive learning algorithm for the estimation for w 

o 

at node k at time i is given by the LMS algorithm [8] : 

w k ( i ) = w k ( i − 1 ) + μk e k ( i ) u 

H 
k (i − 1) (7) 

where μk is the step size at node k . 
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