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a b s t r a c t

For many years, various methods for the identification and estimation of parameters in linear, discrete-
time transfer functions have been available and implemented in widely available Toolboxes forMatlabTM.
This paper considers a unified Refined Instrumental Variable (RIV) approach to the estimation of discrete
and continuous-time transfer functions characterized by a unified operator that can be interpreted in
terms of backward shift, derivative or delta operators. The estimation is based on the formulation of a
pseudo-linear regression relationship involving optimal prefilters that is derived from an appropriately
unified Box–Jenkins transfer function model. The paper shows that, contrary to apparently widely held
beliefs, the iterative RIV algorithm provides a reliable solution to the maximum likelihood optimization
equations for this class of Box–Jenkins transfer function models and so its en bloc or recursive parameter
estimates are optimal in maximum likelihood, prediction error minimization and instrumental variable
terms.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Instrumental Variable (IV) methods of parameter estimation
have a long history in the statistical and control engineering
literature. IV estimation has its roots in statistics and econometrics
(Reiersol, 1941) and is discussed in some detail by Kendall and
Stuart (1961). Some early publications in the control engineering
literature include Mayne (1967), Wong, Polak, and Chen (1967)
and Young (1970). Comprehensive treatments of ordinary and
optimal IV methods applied to the estimation of parameters
in discrete-time transfer function models then appeared almost
simultaneously in two early books (Söderström & Stoica, 1983;
Young, 1984). More recent papers in this general field include
Garatti, Campi, and Bittanti (2006), Gilson and Van den Hof
(2005), Laurain, Toth, Gilson, andGarnier (2010, 2011), Söderström
(2012), Toth, Laurain, Gilson, and Garnier (2012), Wang, Zheng,
and Chen (2009) and Young (2011). The present paper concerns
the optimal Refined Instrumental Variable (RIV) approach to the
unified estimation of parameters in both discrete and continuous-
time transfer function models. The basic RIV algorithm was first
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suggested by the present author (Young, 1976) for discrete-
time models and then thoroughly evaluated and extended to
multivariable and continuous-time models (Jakeman & Young,
1979; Young, 1984; Young & Jakeman, 1979, 1980). Over the
subsequent years, it has been developed in various ways, with
recent publications on this topic including Garnier, Gilson, Young,
and Huselstein (2007), Garnier and Young (2014), Gilson, Garnier,
Young, and Van den Hof (2011), Young (2008, 2011) and Young,
Garnier, and Gilson (2008). The present paper follows the
above references and considers estimation in the time domain.
Alternative IV approaches formulated in the frequency domain
(see e.g. Pintelon & Schoukens, 2001) have received much less
attention, although recent research (Gilson, Welsh, & Garnier,
2013) is moving in this direction.

Unlike standard IV algorithms, the RIV approach is not based
on an IV modification of a linear least-squares solution to the esti-
mation problem, or an approximate approach to prediction error
minimization. Rather, as this paper will show, it is an iterative
Pseudo-Linear Regression (PLR) algorithm that is derived directly
from the conditions required for optimization of the Maximum
Likelihood (ML) function associated with a unified Box–Jenkins (BJ)
transfer function model. Upon convergence of this iterative proce-
dure, therefore, its parameter estimates are optimal in maximum
likelihood, prediction error minimization and instrumental vari-
able terms. This is a rather elegant solution because it not only
provides en-bloc estimates that maximize the likelihood function
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but it can also produce recursive estimates that are identical to the
repeated, stage-wise en bloc estimates, as in linear least squares
estimation. Indeed, this was one of the primarymotivations for de-
veloping the algorithm in the iterative pseudo-linear form where,
at each iteration, the estimates are obtained from a linear least
squares solution that can be either en-bloc or recursive. Normally,
however, the recursive estimates are only required by the user
at the final iteration, where they relate to the converged, en-bloc
parameter estimates. Here, the recursive estimates are useful for
visually appraising the nature of the convergence and associated
uncertainty at the final iteration, as illustrated later in the example
of Section 6.1.

The first aim of the paper is to emphasize the inherent ML
derivation of the RIV parameter estimation algorithm and so
heighten awareness of this derivation. The second is to show how
this solution is a unified one that can be applied to discrete-time
and continuous-time transfer function models that include mod-
els defined in terms of the backward shift, δ and derivative opera-
tors. The acronym RIV will be used to refer to the general, unified
algorithm, while RIVD, RIVC and RIVδ will refer to the specific
operator versions. For simplicity, the associated analysis will be
presented for the case of a single input, single output, stochastic
system. This is, of course, easily extended to a multiple input sys-
tem where the transfer functions share a common denominator;
and RIV algorithms for multiple input models with different de-
nominators in each input channel have been developed for discrete
(Jakeman, Steele, & Young, 1980) and continuous-time (Garnier
et al., 2007) models: these are described fully in these references,
so they will not be considered here.

A third aim is to show that the iterative optimization procedure
used in the standard implementation of the RIV algorithm can be
considered in an entirely equivalent ‘iterative updating’ formof the
Gauss–Newton (GN) kind, demonstrating again that it is based on
an implicit prediction error minimization procedure. This GN in-
terpretation demonstrates how the iterative optimization strategy
is seeking out a local maximum of the log-likelihood cost func-
tion via prediction error minimization. As such, it provides an al-
ternative to standard iterative prediction error minimization that
is both robust under difficult estimation conditions and, as men-
tioned above, yields inherent recursive estimates of the model pa-
rameters because of the pseudo-linear nature of the estimation
model. The paper will argue that these recursive parameter esti-
mates can provide a useful diagnostic tool for evaluating both the
identifiability of themodel and the quality of the associated param-
eter estimates, as well as providing an obvious link with real-time
recursive RIV estimation of time-variable parameters (Ljung, 1999;
Young, 2011).

The next Section 2 of the paper introduces the unified BJmodel;
while themaximum likelihood estimation of the parameters in this
model is considered in Section 3. Section 4 shows how maximum
likelihood estimation of the unified BJ model can be accomplished
by transforming the system and noise sub-models into pseudo-
linear regression models, whose iterative estimation within the
RIV framework yields maximum likelihood estimates of the full
model parameters. Section 5 outlines the main aspects of the RIV
algorithm and discusses its initiation, convergence and optimality
in instrumental variable terms. Finally, Section 6 presents two
simulation studies that reasonably exemplify the performance
of the unified RIV algorithm when applied to backward shift,
derivative and δ operator transfer function models.

2. The unified Box–Jenkins model

This paper is concerned with the estimation of the parame-
ters that characterize a Single-Input, Single-Output (SISO), linear,

time-invariant and stable transfer function model from uniformly
sampled input–output data {u(k), y(k)}, k = 1, 2, . . . ,N , where
the argument k denotes the kth sample from an underlying
continuous-time system. In particular, let us consider the stochas-
tic SISO transfer function model first conceived and promoted by
Box and Jenkins (1970) and Box, Jenkins, and Reinsel (1994) for
discrete-time systems, which can be unified and written, at any
sampling instant k, in the following decomposed form1:

System TF Model : x(k) =
B(µ−1)

A(µ−1)
u(k − τ) (1a)

Noise TF Model : ξ(k) =
D(µ−1)

C(µ−1)
e(k);

e(k) = N (0, σ 2)

(1b)

Output Observation : y(k) = x(k) + ξ(k) (1c)

where τ is a pure time delay and µ is a unified operator that,
in the present paper, can be interpreted as the forward shift
operator, denoted here by z; the derivative operator, denoted
here by s; or the delta operator, δ. The ‘noise-free’ output x(k)
plays an important part in the subsequent analysis and establishes
the link between maximum likelihood and instrumental variable
estimation. Given the possible interpretations of the unified
operator µ, it is important to note that this model is informal and
represents a ‘snapshot’ of the system at the kth sampling instant.

Themodel polynomials inµ that characterize themodel (1) are
defined as follows,

A(µ−1) = 1 + a1µ−1
+ a2µ−2

+ · · · + anµ−n

B(µ−1) = b0 + b1µ−1
+ b2µ−2

+ · · · + bmµ−m

C(µ−1) = 1 + c1µ−1
+ c2µ−2

+ · · · + cpµ−p

D(µ−1) = 1 + d1µ−1
+ d2µ−2

+ · · · + dqµ−q.

(2)

Although these definitions are required for the development of
the unified results and apply directly to the polynomials of the
backward shift operatormodel,whereµ−1

= z−1, the polynomials
used in the subsequent development of RIVC and RIVδ algorithms,
are defined in terms of µ (see later, Section 4.3.1), i.e.,

A(µ) = µn
+ a1µn−1

+ a2µn−2
+ · · · + an

B(µ) = b0µm
+ b1µm−1

+ b2µm−2
+ · · · + bm

(3)

which does not, of course, change the model. Also, for reference in
the next section,

e(k) =

e(1) e(2) . . . , e(N)

T
; e(k) = N (0, σ 2I) (4)

where N is the number of samples available for estimation. The
structure of the above model will be denoted by the pentad
[n m τ p q] and, for simplicity of exposition, the time delay
τ will be set initially to zero, without any loss of generality; and the
µ−1 argument will be dropped from the polynomials.

Finally, note that, while this unified Box–Jenkins (BJ) model
assumes the stochastic white noise source e(k) is normally
distributed, this is not an essential requirement for the application
of the resultant RIV algorithms, although it is essential to the
optimality of the ML approach used in the derivation of the RIV
algorithm that follows below in the next two sections.

1 Note that the nomenclature used for transfer functions here is that used for RIV
estimation since 1976 (Young, 1976, 2011); in this unified context,models intended
for PEM estimation in MatlabTM would use C(µ−1)/D(µ−1) for the ARMA noise
model; and/or B(µ−1)/F(µ−1) for the system model.
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