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a b s t r a c t

In this contribution we present an extension of the prediction scheme proposed in Manitius and Olbrot
(1979) for the compensation of the input delay to the case of linear neutral type systemswith input delay.
For simplicity of the presentation we treat the case of systems with one state delay.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Time delay in the input/output signals appears inmathematical
models of various technical and technological processes – rolling
mills, communication networks, traffic systems, combustion pro-
cesses, biological and chemical processes – just to mention some
of them. The predictive scheme for the compensation of actuator
delays known now as Smith predictor has been proposed in Smith
(1959). Starting from this publication a lot of new prediction tech-
niques to control systems with time-delay in the input and/or out-
put signals have beendeveloped, seeArtstein (1982), Fiagbedzi and
Pearson (1986), Krstic (2009), Krstic and Smyshlyaev (2008), Kwon
and Pearson (1980), Manitius and Olbrot (1979), Mazenc et al.
(2003), Michiels, Engelborghs, Vansevenant, and Roose (2002),
Niculescu and Annaswamy (2003) and references therein. In com-
parison to the case of systems described by linear time-invariant
ordinary differential equationswith delay in the control input, very
few results are available for systems with both input and state de-
lays. This fact has been emphasized in Krstic (2009).

In this contribution we present an extension of the prediction
scheme proposed inManitius and Olbrot (1979) for the compensa-
tion of the input delay in the computation of stabilizing controllers
for linear neutral type systems with input delay. The case of re-
tarded type systems has been studied in Kharitonov (2014). For
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simplicity of the presentation we treat the case of systems with
one state delay, but the obtained results can be extended to the
case of systems with multiple state delays, as well.

In Section 2weprovide basic notations used in the contribution,
and give a formal statement of the stabilization problem for
neutral type systems with input delay. Section 3 is devoted to the
fundamental matrix of a neutral type system. Here it is shown
that both the matrix and its first time derivative admit upper
bounds. At the end of the section an explicit expression for the
solutions of the system is given. Then, in Section 4, we apply this
expression for the computation of future states of the system in
order to compensate the input delay. These future states are used
in the construction of stabilizing control laws. It is shown that
such a control law is described by an integral equation, similar to
that obtained inManitius and Olbrot (1979), with additional terms
due to the presence of the state delay in the system. Section 5 is
dedicated to the stability analysis of the closed-loop system. The
principal goal of the section is an upper exponential estimate for
the solutions of the closed-loop system. In the computation of this
estimate we assume that a similar estimate is already available
for the solutions of an auxiliary neutral type system. Having in
mind to rid of the assumptionwe present a Lyapunov type stability
analysis. As the system under investigation contains state delay
we are not able to use in this analysis Lyapunov functions any
more, and should address Lyapunov–Krasovskii functionals. To
this end we introduce in Section 6 some basic results concerning
functionals involved in such an analysis.

In Section 7 we start with a simple modification of the back-
stepping transformation of the control variable proposed in Krstic
and Smyshlyaev (2008). This transformation allows to present the
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closed-loop system in a formmore appropriate for the consequent
stability analysis. For the transformed system we propose a
Lyapunov functional, similar to that of Krstic (2009), with a single
modification—an auxiliary quadratic functional is used instead of
the quadratic Lyapunov form. As a result we first obtain an upper
exponential estimate for the solutions of the transformed system,
and then we derive a similar exponential estimate for the original
control variable. Several examples, illustrating the computation of
the stabilizing control laws, are given in Section 8.

2. Problem formulation

Given a time-delay system of the form

d
dt

[x(t)− Dx(t − h)] = A0x(t)+ A1x(t − h)+ Bu(t − τ), (1)

where A0, A1,D are n×nmatrices, and B is n×mmatrix. The system
delays satisfy the inequalities τ ≥ h > 0.We assume that an initial
function ϕ : [−h, 0] → Rn belongs to the space C1([−h, 0], Rn)
of continuously differentiable functions. Let x(t, ϕ) stand for the
solution of system (1) under the initial condition

x(θ, ϕ) = ϕ(θ), θ ∈ [−h, 0],

and xt(ϕ) denotes the restriction of the solution to the segment
[t − h, t],

xt(ϕ) : θ → x(t + θ, ϕ), θ ∈ [−h, 0].

We omit argument ϕ in these notations, and write x(t) and xt
instead of x(t, ϕ) and xt(ϕ), when no confusion may arise.

The euclidean norm is used for vectors, and the induced matrix
norm for matrices. The space C1([−h, 0], Rn) is supplied with the
uniform norm,

∥ϕ∥h = sup
θ∈[−h,0]

∥ϕ(θ)∥ .

In the followingwe assume that there existmatrices F0 and F1, such
that the system

d
dt

[x(t)− Dx(t − h)] = (A0 + BF0) x(t)+ (A1 + BF1) x(t − h),(2)

is exponentially stable.
Problem. Find a control law under which the system (1) coincides
with (2).

Remark 1. Exponential stability of system (2) implies that matrix
D is Schur stable. In this case there exist d ≥ 1 and ρ ∈ (0, 1), such
that the following inequalityDj

 ≤ dρ j, j = 0, 1, 2, . . . (3)

holds (see Theorem 4.5 in Leonov and Shumafov (2012)).

We start with a formal definition of what is known as a fundamen-
tal matrix of system (1), see Hale and Verduyn-Lunel (1993).

Definition 1. A square n×nmatrixK(t) is said to be a fundamental
matrix of system (1) if it satisfies the following conditions:

(1) Initial condition: K(t) = 0n×n, for t < 0, and K(0) = I .
(2) For t ≥ 0 the matrix is a solution of the equation

d
dt

[K(t)− K(t − h)D] = K(t)A0 + K(t − h)A1. (4)

(3) Sewing condition: The difference

K(t)− K(t − h)D (5)

is continuous for t ≥ 0.

Then, we present an auxiliary statement.

Lemma 1. Given a positive τ = lh + δ, where l is an entire number,
and δ ∈ [0, h), there exist positive constants η0 and η1 that satisfy the
inequalities

sup
t∈[0,τ ]

∥K(t)∥ ≤ η0, (6)

sup
t∈[0,τ ]/{0,h,...,lh}

dK(t)dt

 ≤ η1. (7)

Proof. See Appendix for the proof.

Let K(t) be the fundamental matrix of system (1), and x(t) is a so-
lution of the system, then the following expression holds, see Hale
and Verduyn-Lunel (1993)

x(t) =

 t

t0
K(t − ξ)Bu(ξ − τ)dξ

+

 0

−h
K(t − t0 − θ − h)A1x(t0 + θ)dθ

+

 0

−h
K ′(t − t0 − θ − h)Dx(t0 + θ)dθ

+ K(t − t0)[x(t0)− Dx(t0 − h)], t ≥ t0.
Here K ′(t) stands for the first derivative of the matrix,

K ′(t) =
dK(t)
dt

.

Remark 2. Computing the integral 0

−h
K ′(t − t0 − θ − h)Dx(t + θ)dθ

one has to remember that matrix K(t) has a jump discontinuity at
points multiple to h. Therefore, the derivative K ′(t − t0 − θ − h)
includes Dirac type generalized functions.

3. General scheme

Given a solution x(t) of system (1), then

x(t + τ) =

 0

−τ

K(−ξ)Bu(t + ξ)dξ + K(τ ) [x(t)− Dx(t − h)]

+

 0

−h
K(τ − θ − h)A1x(t + θ)dθ

+

 0

−h
K ′(τ − θ − h)Dx(t + θ)dθ, (8)

and

x(t + τ − h) =


−h

−τ

K(−h − ξ)Bu(t + ξ)dξ

+ K(τ − h) [x(t)− Dx(t − h)]

+

 0

−h
K(τ − θ − 2h)A1x(t + θ)dθ

+

 0

−h
K ′(τ − θ − 2h)Dx(t + θ)dθ. (9)

We start with a control law of the form
u(t) = F0x(t + τ)+ F1x(t + τ − h), t ≥ 0, (10)
where x(t + τ) and x(t + τ − h) on the right-hand side of the
preceding expression are replaced by (8) and (9), respectively. As a
result we arrive at a control law of the form
u(t) = f (ut , xt), t ≥ 0,
where
ut : ξ → u(t + ξ), ξ ∈ [−τ , 0],
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