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a b s t r a c t 

In parameter estimation, it is common place to design a linearly constrained minimum variance estima- 

tor (LCMVE) to tackle the problem of estimating an unknown parameter vector in a linear regression 

model. So far, the LCMVE has been mainly studied in the context of stationary constraints in stationary 

or non-stationary environments, giving rise to well-established recursive adaptive implementations when 

multiple observations are available. In this communication, provided that the additive noise sequence is 

temporally uncorrelated, we determine the family of non-stationary constraints leading to LCMVEs which 

can be computed according to a predictor/corrector recursion similar to the Kalman Filter. A particularly 

noteworthy feature of the recursive formulation introduced is to be fully adaptive in the context of se- 

quential estimation as it allows at each new observation to incorporate or not new constraints. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In the signal processing literature dealing with parameter es- 

timation, one of the most studied estimation problem is that of 

identifying the components of a N -dimensional observation vector 

( y ) formed from a linear superposition of P individual signals ( x ) 

to noisy data ( v ): y = Hx + v 1 , a.k.a. the linear regression problem, 

where H is a N -by- P matrix and v is a N -dimensional vector. The 

importance of this problem stems from the fact that a wide range 

of problems in communications, array processing, and many other 

areas can be cast in this form [1,2] . As in [ 3 , Section 5.1], we adopt 

a joint proper complex signals assumption for x and v , which al- 

lows to resort to standard estimation in the mean squared error 

(MSE) sense defined on the Hilbert space of complex random vari- 

ables with finite second-order moment. A proper complex random 

variable is uncorrelated with its complex conjugate. Any result de- 

rived with joint proper complex random vectors are valid for real 

random vectors provided that one substitutes the matrix/vector 

transpose conjugate for the matrix/vector transpose. Additionally, 

it is assumed that: (a) v is zero mean, (b) x is uncorrelated with 
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1 Throughout the present communication, scalars, vectors and matrices are rep- 

resented, respectively, by italic, bold lowercase and bold uppercase characters. The 

scalar/matrix/vector transpose conjugate is indicated by the superscript H . [ A B ] and [
A 
B 

]
denotes respectively the matrix resulting from the horizontal and the vertical 

concatenation of A and B . E [ · ] denotes the expectation operator. 

v , (c) the model matrix H and the noise covariance matrix C v are 

either known or specified according to known parametric models. 

In this setting, the weighted least squares estimator of x [4] : 2 

̂ x 

b = arg min 

x 

{
( y − Hx ) 

H C 

−1 
v ( y − Hx ) 

}
(1a) 

= 

(
H 

H C 

−1 
v H 

)−1 
H 

H C 

−1 
v y , (1b) 

coincides with the maximum-likelihood estimator [5] , if x is de- 

terministic and v is Gaussian, and is known to minimize the MSE 

matrix among all linear unbiased estimators of x , that is ̂  x b = W 

bH y 

where [6] : 

W 

b = arg min 

W 

{ 

E 

[ (
W 

H y − x 

)(
W 

H y − x 

)H 
] } 

s.t. W 

H H = I (2a) 

= C 

−1 
v H 

(
H 

H C 

−1 
v H 

)−1 
, (2b) 

whatever x is deterministic or random. Furthermore, since the ma- 

trix W 

b is as well the solution of [2,6] : 

W 

b = arg min 

W 

{
W 

H C v W 

}
s.t. W 

H H = I , (2c) 

̂ x b is also known as the minimum variance distortion less re- 

sponse estimator (MVDRE) [1,2,6] . However, it is well known that 

the performance achievable by the MVDRE strongly depends on 

the accurate knowledge on the parametric model of the obser- 

vations, that is on H and C v , and are not particularly robust in 

2 The superscript b is used to remind the reader that the value under considera- 

tion is the “best” one according to a given criterion. 
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the presence of various types of differences between the model 

and the actual environment [ 1 , Section 6.6], [ 7 , Section 1], [8] . 

Thus linearly constrained minimum variance estimators (LCMVEs) 

[6,9,10] have been developed in which additional linear constraints 

are imposed to make the MVDRE more robust [ 1 , Section 6.7], 

[ 7 , Section 1], [8] : 

W 

b = arg min 

W 

{
W 

H C v W 

}
s.t. W 

H � = �, � = [ H �] , � = [ I ϒ] , 

(3a) 

= C 

−1 
v �

(
�H C 

−1 
v �

)−1 
�H , (3b) 

where � and Y are known matrices of the appropriate dimen- 

sions, at the expense of an increase of the minimum MSE achieved, 

since additional degrees of freedom are used by the LCMVE in 

order to satisfy these constraints. However, firstly, the closed- 

form solution of the LCMVE (3b) requires the inversion of C v , 

which can be too computationally complex for numerous real- 

world applications. Secondly, C v may be unknown and must be 

learned by an adaptive technique. Interestingly enough, if x and 

v are uncorrelated, C v can be replaced by C y in (1b) , (2b) and 

(3b) , which means that either C v can be learned from auxiliary 

data containing noise only, if available, or C y can be used instead 

and learned from the observations. Therefore, when several ob- 

servations { y 1 , . . . , y k } are available, adaptive implementations of 

the LCMVE have been developed resorting to constrained stochas- 

tic gradient [6,11] , constrained recursive least squares [12,13] and 

constrained Kalman-type [14,15] algorithms. The known equiva- 

lence between the LCMVE and the generalized side lobe canceller 

processor [9,10,16] allows to resort as well to standard (uncon- 

strained) stochastic gradient or recursive least squares [2] . These 

recursive algorithms belongs to the set of sequential estimation 

algorithms compatible with applications where the observations 

become available sequentially and, immediately upon receipt of 

new observations, it is desirable to determine new estimates based 

upon all previous observations (including the current ones). It is 

an attractive formulation for embedded systems in which compu- 

tational time and memory are at a premium, since it does not re- 

quire that all observations are available for simultaneous (“batch”) 

processing. Last, this can be computationally beneficial in cases in 

which the number of observations is much larger than the number 

of signals [17] . 

However, the aforementioned recursive algorithms can only up- 

date sequentially the LCMVE (3b) in non-stationary environments, 

i.e. when the observation model changes over time ( y l = H l x + v l , 

1 ≤ l ≤ k ), for a given set of linear constraints W 

H � = � [2,6,11–

15] , which defines the set of recursive LCMVEs for stationary con- 

straints. An example of a recursive LCMVE for non-stationary con- 

straints in non-stationary environments is given by the MVDRE ̂  x b 
k 

of x , based on observations up to and including time k . Indeed, 

provided that the additive noise sequence { v 1 , . . . , v k } is temporally 

uncorrelated, ̂ x b 
k 

follows a predictor/corrector recursion similar to 

the Kalman Filter [ 17 , Section 1] [18] : 

̂ x 

b 
k = ̂

 x 

b 
k −1 + W 

bH 
k 

(
y k − H k ̂  x 

b 
k −1 

)
, ̂ x 

b 
1 = 

(
H 

H 
1 C 

−1 
v 1 

H 1 

)−1 
H 

H 
1 C 

−1 
v 1 

y 1 , (4) 

where W 

b 
k 

is analogous to a Kalman gain at time k . In this case, 

the set of constraints (2c) is non-stationary since it is defined as 

W 

H 
H k = I , where H k is the matrix resulting from the vertical con- 

catenation of k matrices H 1 , ... , H k , and W is an unknown matrix 

of the appropriate dimensions. Off course, from a theoretical point 

of view, if all the observations { y 1 , . . . , y k } are stacked into a sin- 

gle vector y 
T 
k = 

(
y T 

1 
, . . . , y T 

k 

)
, the “batch form” (3b) obtained from 

y k allows to implement LCMVEs with non-stationnary constraints, 

which are, unfortunately, hardly likely to be computable as the 

size of y k increases. Therefore the novel contribution of the present 

communication is to introduce, provided that the additive noise se- 

quence { v 1 , . . . , v k } is temporally uncorrelated, the family of linear 

constraints yielding a LCMVE which can be computed recursively 

in the form of (4) in place of the “batch form” (3b) . It appears 

that this family only contains non-stationary constraints, includ- 

ing the aforementioned MVDRE. A particularly noteworthy feature 

of the recursive formulation introduced is to be fully adaptive in 

the context of sequential estimation as it allows at each new ob- 

servation to incorporate or not new constraints. The relevance of 

the proposed recursive formulation of the LCMVE is exemplified in 

Section 3 in the context of array processing. 

2. Recursive linearly constrained minimum variance estimators 

In the following: a) the vector space of complex matrices with 

N rows and P columns is denoted M C ( N, P ) , b) the matrix result- 

ing from the vertical concatenation of k matrices A 1 , ... , A k of same 

column number is denoted A k . We consider the linear measure- 

ment/observation model: 

y k = H k x + v k , k ≥ 1 , (5a) 

where x is a P -dimensional complex unknown vector, y k is a 

N k -dimensional complex measurement/observation vector, H k ∈ 

M C ( N k , P ) and the complex noise sequence { v k } k ≥ 1 is zero-mean 

and temporally uncorrelated. Then (5a) can be extended on a hori- 

zon of k points from the first observation as: 

y k = 

⎛ 

⎝ 

y 1 
. . . 

y k 

⎞ 

⎠ = 

⎡ 

⎣ 

H 1 

. . . 
H k 

⎤ 

⎦ x + 

⎛ 

⎝ 

v 1 
. . . 

v k 

⎞ 

⎠ 

= H k x + v k , 

∣∣∣∣∣
y k , v k ∈ M C ( N k , 1 ) 

H k ∈ M C ( N k , P ) 

N k = 

∑ k 
l=1 N l 

. (5b) 

Let W k = 

[D k −1 
W k 

]
where D k −1 ∈ M C 

(
N k −1 , P 

)
and W k ∈ 

M C ( N k , P ) . The aim is to look for the family of linear constraints: 

W 

H 

k �k = �k , �k = 

[
H k �k 

]
, �k = [ I ϒk ] , (6) 

where �k and Y k are known matrices of the appropriate dimen- 

sions, yielding a LCMVE ̂  x b 
k 

= W 

bH 

k y k where (3a) and (3b) : 

W 

b 

k = arg min 

W k 

{ 

W 

H 

k C v k 
W k 

} 

s.t. W 

H 

k �k = �k (7a) 

= C 

−1 
v k 

�k 

(
�

H 

k C 

−1 
v k 

�k 

)−1 

�H 
k , (7b) 

which can be computed according to a predictor/corrector recur- 

sion of the form, ∀ k ≥ 2: 

̂ x 

b 
k = ̂

 x 

b 
k −1 + W 

bH 
k 

(
y k − H k ̂  x 

b 
k −1 

)
= 

(
I − W 

bH 
k H k 

)̂
 x 

b 
k −1 + W 

bH 
k y k . (8) 

A key point to solve the problem at hand is to notice that, since 

C v l , v k 
= C v k 

δl 
k 

, then for any W k satisfying (6) : 

P k 

(
W k 

)
= W 

H 

k C v k 
W k = D 

H 

k −1 C v k −1 
D k −1 + W 

H 
k C v k W k = P k 

(
D k −1 , W k 

)
, 

(9) 

which suggests that some ad hoc linear constraints (6) could yield 

separable solutions for D k −1 and W k , which is investigated in a first 

step. 
• First step 

If we recast �k = 

[
H k �k 

]
as �k = 

[�k −1 
�k 

]
where �k −1 = [

H k −1 �k −1 

]
and �k = [ H k �k ] , then an equivalent form of (6) is: 

W 

H 

k �k = �k ⇔ D 

H 

k −1 �k −1 = �k − W 

H 
k �k . (10) 
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