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a b s t r a c t

In this paper, we study randomized methods for feedback design of uncertain systems. The first
contribution is to derive the sample complexity of various constrained control problems. In particular,
we show the key role played by the binomial distribution and related tail inequalities, and compute
the sample complexity. This contribution significantly improves the existing results by reducing the
number of required samples in the randomized algorithm. These results are then applied to the analysis
of worst-case performance and design with robust optimization. The second contribution of the paper
is to introduce a general class of sequential algorithms, denoted as Sequential Probabilistic Validation
(SPV). In these sequential algorithms, at each iteration, a candidate solution is probabilistically validated,
and corrected if necessary, to meet the required specifications. The results we derive provide the sample
complexity which guarantees that the solutions obtained with SPV algorithms meet some pre-specified
probabilistic accuracy and confidence. The performance of these algorithms is illustrated and compared
with other existing methods using a numerical example dealing with robust system identification.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The use of randomized algorithms for systems and control has
matured thanks to the considerable research effortsmade in recent
years. Key areas where we have seen convincing developments in-
clude uncertain and hybrid systems (Tempo, Calafiore, & Dabbene,
2013; Vidyasagar, 1997). A salient feature of this approach is the
use of the theory of rare events and large deviation inequalities,
which suitably bound the tail of the probability distribution. These
inequalities are crucial in the area of statistical learning theory
(Bousquet, Boucheron, & Lugosi, 2004; Vapnik, 1998), which has
been utilized for feedback design of uncertain systems (Vidyasagar,
2001).
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Design in the presence of uncertainty is of major relevance
in different areas, including mathematical optimization and
robustness (Ben-Tal &Nemirovski, 1998; Petersen& Tempo, 2014).
The goal is to find a feasible solutionwhich is optimal in some sense
for all possible uncertainty instances. Unfortunately, the related
semi-infinite optimization problems are often NP-hard (examples
of NP-hard problems in systems and control can be found in
Blondel & Tsitsiklis, 1997, 2000), and this may seriously limit
their applicability from the computational point of view. There are
two approaches to resolve this NP-hard issue. The first approach
is based on the computation of deterministic relaxations of the
original problem, which are usually polynomial time solvable.
However, thismight lead to overly conservative solutions (Scherer,
2006). An alternative is to assume that a probabilistic description
of the uncertainty is available. Then, a randomized algorithm may
be developed to compute, in polynomial time, a solution with
probabilistic guarantees (Tempo et al., 2013; Vidyasagar, 1997).
Stochastic programming methods (Prékopa, 1995) are similar in
spirit to themethods studied in this paper and take advantage that,
for random uncertainty, the underlying probability distributions
are known or can be estimated. The goal is to find a solution
that is feasible for almost all possible uncertainty realizations
and maximizes the expectation of some function of the decisions
variables.
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The field of probabilisticmethods (Calafiore, Dabbene, & Tempo,
2011; Tempo et al., 2013; Tempo & Ishii, 2007) has received
growing attention in the systems and control community. Two
complementary approaches, non-sequential and sequential, have
been proposed. A classical approach for non-sequential meth-
ods is based upon statistical learning theory (Vapnik, 1998;
Vidyasagar, 1997). Subsequent work along this direction in-
cludes Alamo, Tempo, and Camacho (2009), Chamanbaz, Dabbene,
Tempo, Venkatakrishnan, and Wang (2014), Koltchinskii, Abdal-
lah, Ariola, Dorato, and Panchenko (2000), Vidyasagar (2001) and
Vidyasagar and Blondel (2001). Furthermore, in Alamo, Tempo,
and Luque (2010a,b) and Luedtke and Ahmed (2008) the case in
which the design parameter set has finite cardinality is analyzed.
The advantage of these methods is that the problem under atten-
tionmay be non-convex. For convex optimization problems, a non-
sequential paradigm, denoted as the scenario approach, has been
introduced in Calafiore and Campi (2005, 2006), see also Alamo
et al. (2010b), Calafiore (2010) and Campi and Garatti (2008, 2011)
formore advanced results, and Prandini, Garatti, andVignali (2014)
and Vayanos, Kuhn, and Rustem (2012) for recent developments
in the areas of stochastic hybrid systems and multi-stage opti-
mization, respectively. Finally, we refer to de Farias and Van Roy
(2003) for a randomized approach to solve approximate dynamic
programming.

In non-sequential methods, the original robustness problem
is reformulated as a single optimization problem with sampled
constraints, which are randomly generated. A relevant feature of
these methods is that they do not require any validation step and
the sample complexity is defined a priori. The main result of this
line of research is to derive explicit lower bounds to the required
sample size. However, the obtained explicit sample bounds can be
overly conservative because they rely on a worst-case analysis and
grow (at least linearly) with the number of decision variables.

For sequential methods, the resulting iterative algorithms are
based on stochastic gradient (Calafiore & Polyak, 2001; Polyak &
Tempo, 2001), ellipsoid iterations (Kanev, De Schutter, & Verhae-
gen, 2003; Oishi, 2007); or analytic center cutting plane meth-
ods (Calafiore & Dabbene, 2007; Wada & Fujisaki, 2009), see also
Alamo, Tempo, Ramirez, and Camacho (2007) and Chamanbaz,
Dabbene, Tempo, Venkataramanan, and Wang (2013) for other
classes of sequential algorithms. Convergence properties in finite-
time are one of the focal points of these papers. Various control
problems have been solved using these sequential randomized al-
gorithms, including robust LQ regulators (Polyak & Tempo, 2001),
switched systems (Liberzon & Tempo, 2004) and uncertain linear
matrix inequalities (LMIs) (Calafiore & Polyak, 2001). Sequential
methods are often used for uncertain convex feasibility problems
because the computational effort at each iteration is affordable.
However, they have been studied also for non-convex problems,
see Alamo et al. (2009) and Ishii, Basar, and Tempo (2005).

The common feature of most of these sequential algorithms
is the use of the validation strategy presented in Dabbene,
Shcherbakov, and Polyak (2010) and Oishi (2007). The candidate
solutions provided at each iteration of these algorithms are tested
using a validation set which is drawn according to the probabil-
ity measure associated to the uncertainty. If the candidate solution
satisfies the design specifications for every sampled element of this
validation set, then it is classified as probabilistic solution and the
algorithm terminates. The main point in this validation scheme is
that the cardinality of the validation set increases very mildly at
each iteration of the algorithm. The strategy guarantees that, if a
probabilistic solution is obtained, then it meets some probabilistic
specifications.

In this paper, we derive the sample complexity for various anal-
ysis and design problems related to uncertain systems. In partic-
ular we provide new results which guarantee that the tail of the

binomial distribution is bounded by a pre-specified value. These
results are then applied to the analysis of worst-case performance
and constraint violation. With regard to design problems, we con-
sider the special cases of finite families and robust convex opti-
mization problems. This contribution improves the existing results
by reducing the number of samples required to solve the design
problem. We remark that the results we have obtained are fairly
general and the assumptions on convexity and on finite families
appear only in Section 4which dealswith probabilistic analysis and
design.

The second main contribution of this paper is to propose a
sequential validation scheme, denoted as Sequential Probabilistic
Validation (SPV), which allows the candidate solution to violate
the design specifications for one (or more) of the members of
the validation set. The idea of allowing some violations of the
constraints is not newand can be found, for example, in the context
of system identification (Bai, Cho, Tempo, & Ye, 2002), chance-
constrained optimization (Campi & Garatti, 2011; Nemirovski &
Shapiro, 2006) and statistical learning theory (Alamo et al., 2009).
This scheme makes sense in the presence of soft constraints or
when a solution satisfying the specifications for all the admissible
uncertainty realizations cannot be found. In this way, we improve
the existing results with this relaxed validation scheme that
reduces the chance of not detecting the solution even when it
exists. Furthermore, we also show that a strict validation scheme
may not be well-suited for some robust design problems.

This paper is based on the previous works of the authors Alamo,
Luque, Ramirez, and Tempo (2012) and Alamo et al. (2010b). How-
ever, some results are completely new (Property 4) and others
(Theorem 2, Property 1 and Property 3 and their proofs) are signifi-
cant improvements of the preliminary results presented in the con-
ference papers. Furthermore, the unifying approach studied here,
which combines sample complexity results with SPV algorithms,
was not present in previous papers. Finally, the numerical exam-
ple in Section 8, which compares various approaches available in
the literature, is also new. The rest of the paper is organized as fol-
lows. In the next section, we first introduce the problem formula-
tion. In Section 3, we provide bounds for the binomial distribution
which are used in Section 4 to analyze the probabilistic proper-
ties of different schemes involving randomization. In Section 5, we
introduce the proposed family of probabilistically validated algo-
rithms. The sample complexity of the validating sets is analyzed
in Section 6. A detailed comparison with the validation scheme
presented in Oishi (2007) is provided in Section 7. A numerical
example where different schemes are used to address a robust
identification problem is presented in Section 8. The paper ends
with a section of conclusions and an Appendix which contains
some auxiliary properties and proofs that are used in the previous
sections.

2. Problem statement

We assume that a probability measure PrW over the sample
space W is given. Given W , a collection of N independent identi-
cally distributed (i.i.d.) samples w = {w(1), . . . , w(N)

} drawn from
W belongs to the Cartesian product WN

= W ×· · ·×W (N times).
Moreover, if the collection w of N i.i.d. samples {w(1), . . . , w(N)

} is
generated from W according to the probability measure PrW , then
the multisample w is drawn according to the probability measure
PrWN . The scalars η ∈ (0, 1) and δ ∈ (0, 1) denote probabilistic
parameters called accuracy and confidence, respectively. Further-
more, ln(·) is the natural logarithm and e is the Euler number. For
x ∈ R, x ≥ 0, ⌊x⌋ denotes the largest integer smaller than or equal
to x; ⌈x⌉ denotes the smallest integer greater than or equal to x. For
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