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a b s t r a c t 

Additive noise distributions can be divided into three types: Gaussian, super- and sub-Gaussian. The ex- 

isting algorithms for adaptive filtering do not provide a better performance than the least mean square 

(LMS) method for the super- and sub-Gaussian noise simultaneously. For example, the maximum corren- 

tropy criterion performs better (worse) than the LMS method for super-Gaussian (sub-Gaussian) noise, 

whereas the least mean fourth performs better (worse) than the LMS method for sub-Gaussian (super- 

Gaussian) noise. We propose a criterion for switching between sub- and super- Gaussian additive noise, 

that could be used to assess whether the error signal had a sub- or super-Gaussian profile, and thus 

determine which algorithm would work best in the iterative process. Simulations demonstrate that the 

switching criterion helps the proposed switching algorithm to produce a better performance than the 

LMS algorithm for sub and super-Gaussian noise simultaneously. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Adaptive filtering is widely used in signal processing, and its 

most popular cost function is the mean square error (MSE) [1–3] . 

The corresponding stochastic gradient descent algorithm is gener- 

ally called least mean square (LMS). The LMS algorithm relies on 

second-order similarity measures, and performs well with Gaus- 

sian additive noise, for which the higher statistics are constants. 

Recently, information theoretic learning (ITL) [4–20] has been pro- 

posed for uses with the higher-order moments as a cost function 

and may work well for non-Gaussian noise, for which the higher 

statistics are not constants. The available cost functions include the 

maximum correntropy criterion (MCC) [4–12] , the improved least 

sum of exponentials (ILSE) [13] , the least mean kurtosis (LMK) 

[14] and the least mean fourth (LMF) [15–20] . 

Generally speaking, the distributions of the signal are divided 

into three types [11,21,22] : Gaussian, super-Gaussian, and sub- 

Gaussian distribution. Sub- and super-Gaussian signals are both 

non-Gaussian signals. Typical sub-Gaussian noise has a uniform 

distribution, while typical super-Gaussian noise is impulse noise. 
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In an impulsive noise environment, the MCC algorithm outper- 

forms the LMS [4,20] . In a Gaussian noise environment, the LMS al- 

gorithm performs better than the LMF algorithm [15] and the MCC 

algorithm yields a smaller steady state excess mean square error 

(EMSE) than the LMS algorithm with the same step-size, while as 

the kernel width increases, the steady-state EMSE of the MCC will 

approach that of the LMS [8] . In a uniform additive noise environ- 

ment, the LMF algorithm outperforms the LMS algorithm [15,20] . 

Typically, the LMS, LMF and MCC algorithms work well for Gaus- 

sian, sub-Gaussian, and super-Gaussian noise, respectively. 

To our knowledge, the LMF and LMS have not been compared 

in the impulsive noise environment, and the MCC and LMS have 

not been compared in the uniform noise environment. Our simu- 

lations show that most of the existing algorithms (the MCC, ILSE, 

LMF, and LMK) cannot perform better than the LMS for sub- and 

super-Gaussian noise simultaneously. For super-Gaussian noise, a 

steady error comparison under the same initial convergence speed 

roughly ranks the algorithms in the order MCC < LMS < LMF. For 

sub-Gaussian noise, the same error comparison roughly ranks the 

algorithms in the order LMF < LMS < MCC. It should be mentioned 

here that the rank is not rigorous, and the rank is currently being 

explored. 

Early independent component analysis (ICA) algorithms 

[21,22] introduced the normalized kurtosis to access the sub- 

and super-Gaussian signals. This motivate us to proposed a 
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switching criterion to assess whether the error signal has sub- 

or super-Gaussian distribution, and can thus determine which 

algorithm (MCC or LMF) will work best in the iterative processes. 

Moreover, the following cost function, denoted by G ( x ), was often 

used to separate non-Gaussian signals in ICA algorithms [21–28] , 

G ( x ) = 

1 

α
log cosh ( αx ) , (1) 

where 1 ≤α ≤ 2 and α = 1 is often adopted for that this parameter 

affects the performance of the proposed algorithm slightly. Com- 

pared with the MCC algorithm, which depends on the different 

kernel parameter for different impulse noise, the parameter αin 

G ( x ) can be fixed. Since the cost function of MCC and G ( x ) are 

both used in ICA algorithm to separate non-Gaussian signals, we 

introduce G ( x ) to adaptive filtering applications, and believe that it 

would work well for super-Gaussian noise, and use this cost func- 

tion to substitute for the MCC algorithm in the switching criterion. 

The contributions of this paper can be summarized as follows: 

1) We propose the use of normalized kurtosis as a switch- 

ing criterion to assess whether the additive noise is sub- 

Gaussian or super-Gaussian in adaptive filtering. 

2) We propose a new cost function, G ( x ), for processing of 

super-Gaussian noise. 

The paper is organized as follows: In Section 2 , the problem is 

stated in detail. In Section 3 , the new cost function is introduced 

for super-Gaussian noise. In Section 4 , a switching criterion for 

processing sub or super-Gaussian noise is presented. In Section 5 , 

simulations are described and results are provided. Finally, a con- 

clusion is drawn in Section 6 . 

2. Problem statement 

The normalized kurtosis [ 21 , 22 ] can be considered as a measure 

of the non-Gaussianity of the error signal. The normalized kurtosis 

of a random variable x is defined as 

κ4 = 

E 
{

x 4 
}

E 2 { x 2 } − 3 (2) 

where x is zero mean with unit variance. 

A distribution with negative normalized kurtosis is then called 

sub-Gaussian, or short-tailed (e.g., uniform). A distribution with 

positive normalized kurtosis is called super-Gaussian, or heavy- 

tailed (e.g., Laplacian). A zero-kurtosis distribution is called Gaus- 

sian [21,22] . 

When a linear filtering problem is considered, there is an input 

vector u ∈ R 

M , with unknown parameter w o ∈ R 

M and the desired 

response d ∈ R 

1 . Data d ( i ) are observed at each time point i using 

the linear regression model: 

d ( i ) = w 

T 
o u ( i ) + v ( i ) , i = 1 , 2 , . . . , L (3) 

where v is the zero mean background noise with variance σ 2 
v and 

L is the sequence length. The error signal for the linear filter is 

defined as 

e ( i ) = d ( i ) − w 

T u ( i ) (4) 

where w is the estimated value of w o . 

The linear filtering algorithms of the LMS, MCC, and LMF are as 

follows. The cost function based on the MSE is given by 

J MSE ( w ) = E 
{

e 2 
}

(5) 

where E denotes the expectation operator. The corresponding 

stochastic gradient descent or LMS algorithm is 

w LMS ( i + 1 ) = w LMS ( i ) + μe ( i ) u ( i ) (6) 

where μ denotes the step size and μ> 0. 

The cost function based on the correntropy of the error, which 

is also known as the MCC, is given by 

J MCC ( w ) = E 

{
exp 

(
− e 2 

2 σ 2 

)}
(7) 

where σdenotes the kernel bandwidth. The corresponding stochas- 

tic gradient ascent algorithm is 

w MCC ( i + 1 ) = w MCC ( i ) + μ exp 

(
−e 2 (i ) 

2 σ 2 

)
e ( i ) u ( i ) . (8) 

The cost function based on the LMF is given by 

J LMF ( w ) = E 
{

e 4 
}
. (9) 

The corresponding stochastic gradient descent algorithm is 

w LMF ( i + 1 ) = w LMF ( i ) + μe 3 ( i ) u ( i ) . (10) 

3. Proposed cost function for super-Gaussian noise 

In practice, the convergence speed and steady error of the MCC 

algorithm depend on the kernel bandwidth. A fixed kernel band- 

width may not work well for different super-Gaussian noise. The 

correct choice of kernel width in the MCC algorithm imposes a 

trade-off among robustness, convergence rate and steady-state ac- 

curacy. The adaptive kernel width MCC algorithms [5–7] can im- 

prove the learning speed especially when the initial weight vector 

is far away from the optimal weight vector. 

We propose another cost function for linear filtering as follows: 

G ( w ) = 

1 

α
log cosh [ αe ( i ) ] (11) 

where 1 ≤α ≤ 2, and α = 1 in the simulations. The derivative of 

(11) is given by 

g ( w ) = − tanh [ αe ( i ) ] u . (12) 

The corresponding stochastic gradient descent algorithm is 

w G ( i + 1 ) = w G ( i ) + μ tanh [ αe ( i ) ] u ( i ) . (13) 

In the ICA algorithm [28] , Eq. (7) and (11) are both used in 

the fast-ICA algorithm to separate the super-Gaussian sources, and 

Eq. (9) was used to separate sub-Gaussian sources. Eq. (7) is robust 

to highly super-Gaussian signals. 

4. Switching criterion for the sub and super-Gaussian noise 

We are unlikely to know in advance whether the additive noise 

is sub- or super-Gaussian. The MCC and the LMF do not per- 

form better than the LMS algorithm for sub-Gaussian and super- 

Gaussian noise simultaneously. Using the normalized kurtosis, we 

propose a switching criterion for the sub- and super-Gaussian error 

signals. 

The normalized kurtosis κ4 can be estimated using the follow- 

ing adaptive form [21] : 

M 4 ( i + 1 ) = (1 − η) M 4 ( i ) + ηe 4 ( i ) , 

M 2 ( i + 1 ) = (1 − η) M 2 ( i ) + ηe 2 ( i ) , 

ˆ κ4 ( i + 1 ) = M 4 / ( M 2 ) 
2 − 3 , (14) 

where ˆ κ4 represents the estimate of κ4 , η denotes the forgetting 

factor, and 0 < η < 1. 

The switching algorithm, which combines the MCC, LMS with 

LMF algorithm, is given by 
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