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a b s t r a c t

This paper studies a parameter estimation problem of networked linear systems with fixed-rate quan-
tization. Under the minimum mean square error criterion, we propose a recursive estimator of stochas-
tic approximation type, and derive a necessary and sufficient condition for its asymptotic unbiasedness.
This motivates to design an adaptive quantizer for the estimator whose strong consistency, asymptotic
unbiasedness, and asymptotic normality are rigorously proved. Using the Newton-based and averaging
techniques, we obtain two accelerated recursive estimators with the fastest convergence speed ofO(1/k),
and exactly evaluate the quantization effect on the estimation accuracy. If the observation noise is Gaus-
sian, an optimal quantizer and the accelerated estimators are co-designed to asymptotically approach the
minimum Cramer–Rao lower bound. All the estimators share almost the same computational complexity
as the gradient algorithms with un-quantized observations, and can be easily implemented. Finally, the
theoretical results are validated by simulations.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Quantized estimation has long been an important research
topic, and bears a vast body of literature (Curry, 1970; Gray &
Neuhoff, 1998; Lloyd, 1982; Max, 1960; Papadopoulos, Wornell,
& Oppenheim, 2002; Widrow & Kollár, 2008). While most of the
early work deals with relatively high-rate quantization, they usu-
ally cannot handle the low-rate case. Under high-rate quantiza-
tion, a common approach is to model quantization errors as an
extra additive white noise, thereby allowing to use the standard
solutions in stochastic theory. This approach considerably simpli-
fies the problem but is not always reasonable for coarse quantiza-
tion, andmore powerful techniques are needed to handle low-rate
quantization. Moreover, quantized estimation is fundamental in
understanding the tradeoff between communication rate and es-
timation performance. This work is concerned with the co-design
of the fixed-rate quantizer and estimator to identify the unknown
parameters of linear systems.

The application of networked systems (Baillieul & Antsaklis,
2007), such as sensor networks, micro-electromechanical systems,
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mobile telephony, and industrial control networks, has greatly
boosted the development of quantization methods. To date, many
novel methods have been developed for the networked estima-
tion with quantized observations, including Casini, Garulli, and Vi-
cino (2012), Chen and Varshney (2010), Fang and Li (2008), Fu and
de Souza (2009), Godoy, Goodwin, Agüero, Marelli, and Wigren
(2011), Guo and Zhao (2013) Li and Alregib (2007), Marelli, You,
and Fu (2013), Ribeiro, Giannakis, and Roumeliotis (2006), Shen,
Varshney, and Zhu (2013), Wang and Yin (2007) and Xiao, Ribeiro,
Luo, and Giannakis (2006), to name a few. The key challenges in-
clude that quantization is typically a highly nonlinear operator, and
the estimator is no longer able to access the raw (un-quantized) ob-
servations. This may easily render the existing algorithms dramat-
ically deviate from the true parameter or state. Under a moderate
(e.g. one or two) bit rate constraint, a quantized observation can
only supply few information of the system. It is important to well
use each quantized sample. To make the most of every bit rate, we
should smartly co-design the quantizer and estimator in a unified
approach.

In Xiao et al. (2006), distributed compression and estimation in
the context of wireless sensor networks have been addressed by
using quantization technique. An interesting finding is that the es-
timation performance is quite sensitive to the quantizer threshold.
Actually, to estimate θ under binary quantization of y = θ + v,
where v is a white noise, an optimal way to minimize the mean
square error (MSE) is to simply place the quantizer threshold on the
true parameter θ . Such a threshold is obviously not implementable
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as the true parameter is unknown. Even for this simplest case, it is
not straightforward to find a feasible way to design optimal quan-
tizer thresholds. Then, a central problem is how to optimally design
quantizer thresholds? A large amount of work has been devoted
to studying this problem, and we elaborate those mostly relevant
works below.

Under fixed quantizer thresholds, many excellent works have
been done by respectively using the empirical measure (Wang &
Yin, 2007; Zhao, Guo, & Zhang, 2013), kernel function (Casini et al.,
2012) and so on (Chen & Varshney, 2010; Li & Alregib, 2007; Shen
et al., 2013). To obtain the asymptotic efficiency of the estimator in
the sense of approaching the Cramer–Rao lower bound (CRLB), it
requires the system input to beperiodic and sufficiently rich (Wang
& Yin, 2007; Wang, Yin, Zhang, & Zhao, 2010), which however
makes the algorithm inconvenient for tracking control. In addition,
most of their algorithms are derived by using the exact noise prob-
ability distribution function (pdf), which lack robustness to the er-
ror of the pdf.More importantly, they cannot achieve theminimum
CRLB. Note that the CRLB is quantizer-dependent, and the mini-
mum CRLB is the one that minimizes the CRLB among all quantiz-
ers satisfying the fixed-rate constraint. This certainly implies that
the bit rate inWang and Yin (2007) is not optimally used, and there
exists more efficient algorithms for quantized estimation.

A natural extension of Xiao et al. (2006) is to dynamically ad-
just the quantizer thresholds. In Papadopoulos et al. (2002), the
quantizer thresholds are periodically selected froma given setwith
an equal frequency, hoping that some thresholds are close to the
true parameter. This method cannot arbitrarily tune the quantizer
threshold and again fails to approach the minimum CRLB. In Fang
and Li (2008), an adaptive scheme is proposed through a delta
modulation where the modulation size is adjusted via solving an
on-line optimization per iterate. Although this algorithm indeed
asymptotically approaches the minimum CRLB, it lacks a recursive
form, and is hard to implement. The problem has been resolved
in Marelli et al. (2013) under the maximum likelihood criterion
through the expectation maximization (EM) method. The estima-
tor is jointly computed by an iterative weighted least squares al-
gorithm and a quasi-Newton algorithm. Again, it needs the noise
pdf to compute the E-step at each iterate. Another quantized es-
timator in Godoy et al. (2011) is given in a scenario-based form of
the EMalgorithm. However, the number of scenarios has a tremen-
dous influence on the estimation accuracy, and the larger number
of scenarios used, the higher computation demand needed.

Differently, this paper proposes a recursive estimator of
stochastic approximation type to minimize the MSE under any
quantization process. Then, we derive a necessary and sufficient
condition on its asymptotic unbiasedness for estimating parame-
ters of linear systems. If the estimated parameters were known,
a simple quantizer can be easily designed to fulfill this condition.
This points us a straight way to co-design the quantizer and esti-
mator in a unified approach. Specifically, the unknown parameter
vector is replaced with its latest estimator. This results in a quan-
tized ‘‘innovations’’ scheme, and is consistent with the intuition
that quantizing innovations requires fewer bits than directly quan-
tizing outputs. Similar idea has also been exploited in Marelli et al.
(2013), Ribeiro et al. (2006) and You, Xie, Sun, and Xiao (2008).

Given a symmetric quantizer, we rigorously prove that the co-
designed quantizer and estimator are strongly consistent, asymp-
totically unbiased and normal. Note that the given quantizer does
not require the exact noise pdf. In addition, the proposed esti-
mator shares the same computational complexity as the gradient
algorithm with un-quantized observations, and can be easily im-
plemented. Although our algorithm has a similar structure as Guo
and Zhao (2013), their algorithm requires the noise pdf to update
the iterate, and is usually not asymptotically efficient.

To increase the convergence speed, we further propose two
accelerated estimators by respectively using the Newton-based
and the temporal averaging techniques, and show that both can

Fig. 1. Networked estimation.

converge at the fastest convergence speed of O(1/k). As in You,
Song, and Qiu (2014), the main purpose of averaging is to miti-
gate the ‘‘large jumps’’ of the iterate. Under Gaussian noise and any
fixed-rate constraint, both algorithms are proved to asymptotically
approach the minimum CRLB. The quantization effect on the esti-
mation accuracy can also be exactly quantified. As a by-product,
the result on the Newton-based algorithm is tailored to prove the
asymptotic efficiency of the SOI-KF (Ribeiro et al., 2006).

In comparison, we demonstrate the advantages of our recursive
algorithms from at least three folds. (1) As in themajor gradient al-
gorithm, the proposed estimator only requires the input signal, and
does not need the noise pdf. (2) Their asymptotic properties hold
for any sensible symmetric quantizer, and are robust to the noise
pdf. (3) Under the Gaussian noise and any fixed-rate constraint, an
optimal quantizer can be designed off-line for the accelerated es-
timators, which asymptotically approaches the minimum CRLB.

The rest of the paper is organized as follows. The problem
formulation is delineated in Section 2, where we introduce the
concept of symmetric quantization. In Section 3, the stochastic gra-
dient is adopted to derive a recursive estimator. In Section 4, we
co-design an adaptive quantizer and an estimator to obtain a recur-
sive algorithm to identify the unknownparameters, and analyze its
asymptotic property. In Section 5, two accelerated estimators using
the weighted stochastic gradient and the averaging technique are
given to achieve the fastest convergence speed. Under the Gaus-
sian noise, their asymptotic efficiency and optimality are proved in
Section 6. Simulation is performed in Section 7 to validate the theo-
retical results. Some concluding remarks are drawn in Section 8. To
improve the readability, a technical proof is given in the Appendix.

2. Problem formulation

2.1. Quantized estimation

Consider a networked linear system as follows:

yk = hT
kθ + vk, k = 1, 2, . . . (1)

where θ ∈ Rp is a vector of unknown parameters to be estimated,
hk ∈ Rp is a sequence of known input regressors, and vk ∈ R is a
sequence of observation noises.

We are concernedwith an estimation frameworkwhere the lin-
ear systemand a remote estimator are connected via a digital chan-
nel. The system output yk has to be reduced into finite precision sk
by a fixed-rate quantizer before transmitted to the estimator, see
Fig. 1 for an illustration. The goal is to co-design the quantizer and
estimator to identify the unknown vector θ.

To capture the essence of our key idea, we make the following
assumption.

Assumption 1. The input regressors andobservationnoises satisfy
that

(a) (Persistent excitation) {hk} is a sequence of independent and
identically distributed (i.i.d.) random vectors with a positive
definite variance matrix H , i.e., E[h1hT

1] = H > 0, and is in-
dependent of observation noise vk. There exists some positive
δ such that E[∥h1∥

2+δ
] < ∞.

(b) (Symmetric noise) {vk} is a sequence of i.i.d. random variables
with zero mean and E[v21] = σ 2. In addition, v1 has an even
probability density function (pdf) pv(·), which is continuous at
the origin.
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