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a b s t r a c t 

The problem of parameters estimation of signals composed of an unknown number of chirps with time- 

varying amplitude is presented using a sparse reconstruction framework. The method employs a para- 

metric model using a weighted combination of splines to model the time-varying nature of the signal 

amplitudes. To obtain high-resolution of the frequencies and to avoid large dimensional matrices, a dic- 

tionary refinement technique is employed. The method can accurately estimate the amplitude and fre- 

quency parameters of multiple signal components, and may be extended to allow for non-linear chirps. 

Furthermore, an efficient implementation to solve the resulting optimization problem is proposed. Results 

on both synthetic and experimental signals illustrate the efficient performance of the algorithm. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

Signals with time varying frequency components, chirps, are 

common in many real-world applications, ranging from animal vo- 

calization and human speech to music signals, and are widely used 

in many fields of signal processing, with applications in, for in- 

stance, acoustic scattering, mechanical vibration, geophysics, sonar, 

radar, and telecommunication (see, for instance, [1,2] ). The linear 

chirp signal, also known as a linear frequency modulated signal 

(LFM), has a fundamental role in sonar and radar target detection, 

localization, and classification, as it may provide excellent range 

resolution and Doppler invariance [3,4] . 

Due to the importance of such signals, notable attention has 

been given to develop efficient estimation algorithms for them. 

Most of these works assume that the amplitude of the linear chirp 

signals are constant or normalized. Such signals are characterized 

by the phase function, the instantaneous frequency, which is a 

function of the starting frequency and the frequency rate. Some 

of the methods described in the literature exploit phase unwrap- 

ping [5] , maximum likelihood formulation [2,6] , least squares min- 

imization [7] , sample covariance matrix estimation techniques [8] , 
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as well as integrated cubic phase function estimators [9] . In addi- 

tion, time-frequency analysis has been proven to be a powerful and 

effective tool to analyze chirp signals. Direct ways to obtain the pa- 

rameters from such representations include extraction of the peak 

from the time-frequency plane and adaptive estimation methods, 

as reviewed in [10] , as well as techniques such as ant colony op- 

timization [11] . Other alternative ways include parameterizing the 

time-frequency plane using methods like the Radon or the Hough 

transforms. Such techniques can be developed by combining them 

with a time-frequency analysis tool, such as the Radon-ambiguity 

transform [12] , or the Huang–Hough transform [13] . These meth- 

ods rotate or warp the time-frequency plane to form a new para- 

metric domain. A similar approach is exploited by the fractional 

Fourier transform (FRFT), which transforms the signal from the 

time-domain to a generalized frequency-domain. It can be inter- 

preted as a signal decomposition in terms of a chirp basis, which 

has a notable potential for analyzing chirp signals [14,15] . 

However, in some applications, the signals might have time- 

varying amplitudes by design (e.g. AM-FM signals in communica- 

tion or speech coding) or as a result from signal fluctuations while 

propagating. This occurs, for instance, in active sonar, wherein a 

chirp signal is transmitted towards a potential target. This results 

in the hydrophone receiving echoes containing multiple compo- 

nents produced by rigid reflections and elastic scattering, which 

have different characteristics varying with frequency. These reflec- 

tions may then be used to gain insight of the nature of the target. 

Due to the time-varying nature of such reflections, an estimator as- 

suming a constant amplitude reflection will typically suffer notable 

bias. However, some featured approaches for estimation of time- 
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varying amplitude chirp signals can be extended from those of 

sinusoidal and polynomial phase signals. The parameters of sinu- 

soidal signals can be obtained by the least-squares estimators [16] , 

the nonlinear least-squares (NLS) approach [17] , with the latter 

one also working for polynomial phase signals. Some other avail- 

able methods include the maximum likelihood estimator [18] and 

the cyclic moments-based approaches [19] . A noteworthy approach 

was presented in [20] , where the amplitude and phase of a compo- 

nent was expressed by a weighted sum of some arbitrary sets, and 

the parameters were computed through the maximum likelihood 

estimation of these weights. The NLS approach can be used on a 

mono-component chirp signal with randomly time-varying ampli- 

tude, and may also be combined with the high-order ambiguity 

function [21] . The iterative NLS estimators presented in [22] can 

also solve the estimation problem of harmonic chirp signals. Be- 

sides, by using the parameterized demodulation method, the wide- 

band signals can be transformed to narrow-band ones, which may 

then be extracted using various decomposition methods [23,24] . 

The decomposition problem may also be solved using a linear sys- 

tem where the instantaneous frequencies and instantaneous ampli- 

tudes are modeled as Fourier series [25] . One may also use time- 

frequency analysis to estimate the instantaneous frequencies and 

the power of each component without suffering from cross-terms 

by using methods such as the S-method [26] . Moreover, a method 

based on FRFT was presented in [27] , which can estimate the pa- 

rameters of multiple component signals, although the amplitude 

was there assumed to be linearly modulated. 

Herein, we investigate parameter estimation of a signal contain- 

ing multiple chirp signals with time-varying amplitudes embed- 

ded in Gaussian noise using a sparse reconstruction framework. 

Some related work have been done to estimate chirp signals with 

constant amplitude. In [28] , a Gabor dictionary was used to esti- 

mate multicomponent chirp signals using the matching pursuit al- 

gorithm, in combination with the Hough transform. The drawback 

of such an approach is that it only allows for the estimation of the 

frequency rate. To allow for the estimation of an unknown number 

of chirp signals, a LASSO-based framework was presented in [29] . 

Using this algorithm, the starting frequency and the frequency rate 

of every component can be found simultaneously. Since the esti- 

mation accuracy depends on the grid structure of the dictionary, 

an alternative approach was proposed in [30] , wherein an itera- 

tive framework over two dictionaries was used, each one being de- 

fined over a distinct parameter. A higher resolution estimate could 

then be obtained by adding an NLS search after the LASSO proce- 

dure [31] . In this paper, this framework is extended to allow for 

components with a time-varying amplitude, using an idea remi- 

niscent of the one proposed in [20,32] . Herein, we use a low or- 

der spline basis with uniformly placed knots [33] to capture the 

time-varying nature of the amplitudes. A similar approach has re- 

cently been used for estimation of amplitude modulated sinusoids 

in [34] and for chroma estimation in [35] . By introducing a spline 

basis to represent the time-varying nature of the amplitudes, the 

signal can be characterized by the corresponding weighting coef- 

ficients. These are then utilized to estimate the parameters cap- 

turing the behavior of the signal. An efficient implementation to 

solve the resulting optimization problem is presented based on the 

alternating direction method of multipliers (ADMM) framework 

[36] . 

The paper is organized as follows: in the next section, we in- 

troduce the considered signal model and the proposed estima- 

tion algorithm. Then, in Section 3 , the efficient implementation 

of this estimator is introduced. Section 4 examines the perfor- 

mance of the proposed algorithm. Finally, Section 5 contains our 

conclusions. 

2. Signal model and the proposed estimator 

2.1. Parametric signal model 

Consider the signal 

y (t n ) = 

K ∑ 

k =1 

a k (t n ) e 
jφk (t n ) + e (t n ) (1) 

for n = 1 , 2 , · · · , N, where N denotes the number of available sam- 

ples, K the (unknown) number of components, a k ( t n ) and φk ( t n ) 

are the time dependent amplitude and phase functions of the k th 

component, respectively, whereas e ( t n ) is an additive noise term, 

here assumed to be well modeled as being a white and zero mean 

complex Gaussian random process. The instantaneous frequency, 

which is defined as f k (t) = 

1 
2 π d φk (t ) / d t , is assumed to be linearly 

modulated, or to be well approximated as being linear within short 

time intervals. Thus, the phase function and the instantaneous fre- 

quency may be expressed as 

φk (t n ) = 2 π f 0 k t n + π r k t 
2 
n (2) 

and 

f k (t n ) = f 0 k + r k t n (3) 

respectively, where f 0 
k 

denotes the starting frequency, and r k the 

frequency rate of the k th component. In this work, we assume that 

the complex-valued amplitude varies slowly during the observa- 

tion period, with the highest frequency of the modulation being 

much lower than the frequency range of the signal. This form of 

signals can be often found in active sonar applications, where the 

reflected signals differ from the transmitted signal due to the na- 

ture of the backscattering. Similarly, the model may be used to de- 

tail time-varying audio signals (see, e.g., [37,38] ) or AM-FM signals. 

In the former case, the used model would be appropriate to de- 

tail the discrete-time analytical representation of the signal, often 

used in such applications to form a more compact signal model, 

whereas for the latter, it would instead be used for the demodu- 

lated signal. The considered problem here is that of estimating the 

number of signals, K , as well as time-varying functions a k ( t n ) and 

f k ( t n ), for each component. 

To model the amplitudes’ time-varying nature, a combination 

of spline basis functions (as defined in Section 5.1 in [33] ) may be 

used, such that the amplitudes are detailed as 

a k (t n ) = 

R ∑ 

r=1 

γr (t n ) s r,k (4) 

To ensure the validity of the representation, we assume that the 

components have no overlap in frequency. For the k th component, 

the amplitude may then be expressed as 

a k = �s k (5) 

where 

a k = 

[
a k (t 1 ) a k (t 2 ) · · · a k (t N ) 

]T 
(6) 

where ( · ) T denotes the transpose, and with 

s k = 

[
s 1 ,k s 2 ,k · · · s R,k 

]T 
(7) 

denoting the weighting coefficient, whereas 

� = 

[
γ1 γ2 · · · γR 

]
(8) 

is the designed spline matrix, with 

γr = 

[
γr (t 1 ) γr (t 2 ) · · · γr (t N ) 

]T 
(9) 

for r = 1 , 2 , · · · , R, being the spline basis. With z k (t n ) = e jφk (t n ) , the 

signal model may then be expressed as 

y (t n ) = 

K ∑ 

k =1 

a k (t n ) z k (t n ) + e (t n ) (10) 
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