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a b s t r a c t 

Shrinkage can effectively improve the condition number and accuracy of covariance matrix estimation, 

especially for low-sample-support applications with the number of training samples smaller than the di- 

mensionality. This paper investigates parameter choice for linear shrinkage estimators. We propose data- 

driven, leave-one-out cross-validation (LOOCV) methods for automatically choosing the shrinkage coeffi- 

cients, aiming to minimize the Frobenius norm of the estimation error. A quadratic loss is used as the 

prediction error for LOOCV. The resulting solutions can be found analytically or by solving optimization 

problems of small sizes and thus have low complexities. Our proposed methods are compared with var- 

ious existing techniques. We show that the LOOCV method achieves near-oracle performance for shrink- 

age designs using sample covariance matrix (SCM) and several typical shrinkage targets. Furthermore, 

the LOOCV method provides low-complexity solutions for estimators that use general shrinkage targets, 

multiple targets, and/or ordinary least squares (OLS)-based covariance matrix estimation. We also show 

applications of our proposed techniques to several different problems in array signal processing. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

In statistical signal processing, one critical problem is to es- 

timate the covariance matrix, which has extensive applications 

in correlation analysis, portfolio optimization, and various signal 

processing tasks in radar and communication systems [1–5] . One 

key challenge is that when the dimensionality is large but the 

sample support is relatively low, the estimated covariance matrix 

R , which may be obtained using a general method such as sample 

covariance matrix (SCM) or ordinary least squares (OLS), becomes 

ill-conditioned or even singular, and suffers from significant errors 

relative to the true covariance matrix �. Consequently, signal 

processing tasks that rely on covariance matrix estimation may 

perform poorly or fail to apply. Regularization techniques have 

attracted tremendous attention recently for covariance matrix esti- 

mation. By imposing structural assumptions of the true covariance 

matrix �, techniques such as banding [6] , thresholding [7] , and 

shrinkage [8–18] have demonstrated great potential for improving 

the performance of covariance matrix estimation. See [19–21] for 

recent surveys. 
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This paper is concerned with the linear shrinkage estimation of 

covariance matrices. Given an estimate R of the covariance matrix, 

a linear shrinkage estimate is constructed as ̂ �ρ,τ = ρR + τT 0 , (1) 

where T 0 is the shrinkage target and ρ and τ are nonnega- 

tive shrinkage coefficients. In general, the shrinkage target T 0 is 

better-conditioned, more parsimonious or more structured, with 

lower variance but higher bias compared to the original estimate 

R [11] . The coefficients ρ and τ are chosen to provide a good 

tradeoff between bias and variance, such that an estimate out- 

performing both R and T 0 is achieved and a better approximation 

to the true covariance matrix � can be obtained. Compared to 

other regularized estimators such as banding and thresholding, 

linear shrinkage estimators can be easily designed to guarantee 

positive-definiteness. Such shrinkage designs have been employed 

in various applications which utilize covariance matrices and 

have demonstrated significant performance improvements. The 

linear shrinkage approach has also been generalized to nonlinear 

shrinkage estimation of covariance matrices [22,23] , and is closely 

related to several unitarily invariant covariance matrix estimators 

that shrink the eigenvalues of the SCM, such as those imposing 

condition number constraints on the estimate [24,25] . There are 

also a body of studies on shrinkage estimation of precision matrix 

(the inverse of covariance matrix) [26–30] and on application- 
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oriented design of shrinkage estimators. See [31–36] for example 

applications in array signal processing. 

Shrinkage has a Bayes interpretation [2,9] . The true covariance 

matrix � can be assumed to be within the neighborhoods of the 

shrinkage target T 0 . There can be various different approaches 

for constructing R and T 0 . For example, when a generative model 

about the observation exists, one may first estimate the model 

parameters and then construct R [20] . A typical example of this 

is linear models seen in communication systems. Furthermore, 

different types of shrinkage targets, not necessarily limited to 

identity or diagonal targets, can be used to better utilize prior 

knowledge. For example, knowledge-aided space-time signal 

processing (KA-STAP) may set T 0 using knowledge about the 

environment [3] or past covariance matrix estimates [37] . Even 

multiple shrinkage targets can be applied when distinct guesses 

about the true covariance matrix are available [17] . 

The choice of shrinkage coefficients significantly influences the 

performance of linear shrinkage estimators. Various criteria and 

methods have been studied. Under the mean squared error (MSE) 

criterion, Ledoit and Wolf (LW) [2] derived closed-form solutions 

based on asymptotic estimates of the statistics needed for finding 

the optimal shrinkage coefficients, where R and T 0 are assumed as 

the SCM and identity matrix, respectively. Later the LW solution 

was extended for more general shrinkage targets [3,17] . Chen et al. 

[4] assumed Gaussian distribution and proposed an oracle approx- 

imating shrinkage (OAS) estimator, which achieves near-optimal 

parameter choice for Gaussian data even with very low sample 

supports. The shrinkage coefficients determination can also be cast 

as a model selection problem and thus generic model selection 

techniques such as cross-validation (CV) [38–40] can be applied. 

In general, CV splits the training samples for multiple times into 

disjoint subsets and then fits and assesses the models under 

different splits based on a properly chosen prediction loss. This 

has been explored, e.g., in [10,13] , where the Gaussian likelihood 

is used as the prediction loss. 

All these data-driven techniques achieve near-optimal param- 

eter choice when the underlying assumptions hold. However, 

there are also limitations to their applications: almost all existing 

analytical solutions to shrinkage coefficients [2–4] , Lancewicki 

and Aladjem [17] were derived under the assumption of SCM 

and certain special forms of shrinkage targets. They need to 

be re-designed when applied to other cases, which is generally 

nontrivial. The asymptotic analysis-based methods [2,3] may not 

perform well when the sample support is very low. Although the 

existing CV approaches [10,13] have broader applications, they 

assume Gaussian distribution and employ grid search to determine 

the shrinkage coefficients. The likelihood cost of [10,13] must 

be computed for multiple data splits and multiple candidates of 

shrinkage coefficients, which can be time-consuming. 

In this paper, we further investigate data-driven techniques that 

automatically tune the linear shrinkage coefficients using leave- 

one-out cross-validation (LOOCV). We choose a simple quadratic 

loss as the prediction loss for LOOCV, and derive analytical and 

computationally efficient solutions. The solutions do not need 

to specify the distribution of the data. Furthermore, the LOOCV 

treatment is applicable to different covariance matrix estima- 

tors including the SCM- and ordinary least squares (OLS)-based 

schemes. It can be used together with general shrinkage targets 

and can also be easily extended to incorporate multiple shrinkage 

targets. The numerical examples show that the proposed method 

can achieve oracle-approximating performance for covariance 

matrix estimation and can improve the performance of several 

array signal processing schemes. 

The remainder of the paper is organized as follows. In Section 2 , 

we present computationally efficient LOOCV methods for choosing 

the linear shrinkage coefficients for both SCM- and OLS-based 

covariance matrix estimators and also compare the proposed 

LOOCV methods with several existing methods which have at- 

tracted considerable attentions recently. In Section 3 , we extend 

our results for multi-target shrinkage. Section 4 reports numerical 

examples, and finally Section 5 gives conclusions. 

2. LOOCV choice of linear shrinkage coefficients 

This paper deals with the estimation of covariance matrices of 

zero-mean signals whose fourth-order moments exist. We study 

the LOOCV choice of the shrinkage coefficients for the linear 

shrinkage covariance matrix estimator (1) , i.e., ̂ �ρ,τ = ρR + τT 0 . 

The following assumptions are made: 

1. The true covariance matrix �, the estimated covariance ma- 

trix R , and the shrinkage target T 0 are all Hermitian and 

positive-semidefinite (PSD). 

2. T independent, identically distributed (i.i.d.) samples { y t } of the 

signal are available. 

3. The shrinkage coefficients are nonnegative, i.e., 

ρ ≥ 0 , τ ≥ 0 . (2) 

Assumption 3 follows the treatments in [2–4] and is sufficient 

but not necessary to guarantee that the shrinkage estimate ̂ �ρ,τ is 

PSD when Assumption 1 holds. 1 Two classes of shrinkage targets 

will be considered in this paper. One is constructed independent 

of the training samples { y t } for generating R , similarly to the 

knowledge-aided targets as considered in [3] . The other is con- 

structed from { y t }, but is highly structured with significantly fewer 

free parameters as compared to R . Examples of the second class 

include those constructed using only the diagonal entries of R 

[4,20] and the Toeplitz approximations of R [17] . 

2.1. Oracle choice 

Different criteria may be used for evaluating the covariance 

matrix estimators. In this paper, we use the squared Frobenius 

norm of the estimation error as the performance measure. Given 

�, R and T 0 , the oracle shrinkage coefficients minimize 

J O (ρ, τ ) = || ̂  �ρ,τ − �|| 2 F = || ρR + τT 0 − �|| 2 F , (3) 

where || · || F denotes the Frobenius norm. The cost function in 

(3) can then be rewritten as a quadratic function of the shrinkage 

coefficients: 

J O (ρ, τ ) = 

[
ρ
τ

]T 

A O 

[
ρ
τ

]
− 2 

[
ρ
τ

]T 

b O + tr (�2 ) , (4) 

A O = 

[
tr (R 

2 ) tr (RT 0 ) 
tr (RT 0 ) tr (T 

2 
0 ) 

]
, (5) 

b O = 

[
tr (R�) 
tr (T 0 �) 

]
, (6) 

where tr( · ) denotes the trace of a matrix. As A O is positive- 

definite, we can find the minimizer of J O ( ρ , τ ) by solving the 

above bivariate convex optimization problem. We can also apply 

the Karush–Kuhn–Tucker (KKT) conditions to find the solution 

analytically. From (4) , letting 
J O (ρ,τ ) 

∂ρ
= 

J O (ρ,τ ) 
∂τ

= 0 leads to 

tr (R 

2 ) 

tr (R�) 
ρ + 

tr (RT 0 ) 

tr (R�) 
τ = 1 , (7) 

1 Imposing Assumption 3 may introduce performance loss. Alternatively, one may 

remove the constraint ρ ≥ 0, τ ≥ 0 and impose a constraint that ̂  �ρ,τ is PSD, similar 

to a treatment in [5] . 
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