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a b s t r a c t 

In this paper, a sign normalised least mean square algorithm (SNLMS) based on Wiener spline adaptive 

filter, called SAF-SNLMS, is proposed. The proposed algorithm is derived by minimising the absolute value 

of the a posteriori error. Moreover, to further improve the convergence performance of the SAF-SNLMS, 

the variable step-size scheme is introduced. Simulation results demonstrate the SAF-SNLMS and its vari- 

able step-size variant obtain more robust performance when compared with the existing spline adaptive 

filter algorithms in impulsive noise. 

© 2018 Elsevier B.V. All rights reserved. 

1. Introduction 

The merits of the linear adaptive filter are its simple design and 

analysis, which lead to its wide application in many practical engi- 

neering problems such as acoustic echo cancellation (AEC), acous- 

tic noise control (ANC), channel estimation and equalization. For 

the linear adaptive filter, its weight coefficients can be updated by 

using several sophisticated adaptive algorithms like the least mean 

square (LMS) algorithm, normalized least mean square (NLMS) al- 

gorithm and affine projection algorithm (APA). However, the linear 

model suffers from the performance degradation because of the 

failure to model the nonlinearity. 

In recent years, in order to model the nonlinearity, several 

adaptive nonlinear spline adaptive filters (SAFs) have been intro- 

duced, such as Wiener spline filter [1] , Hammerstein spline filter 

[2] and cascade spline filter [3] . The nonlinearity in this kind of 

structure is modeled by an adaptive look-up table (LUT) in which 

the control points are interpolated by a local low order polynomi- 

nal spline curve. The adaptive spline filters achieve improved per- 

formance in modelling the nonlinearity. However, since their adap- 

tation is derived by minimising the squared value of the instan- 

taneous error, the performance of the spline adaptive filter can 

deteriorate seriously in impulsive noise. To alleviate this problem, 

sign adaptive algorithm is an excellent candidate. The weight vec- 

tor in sign adaptive algorithm is commonly updated in accordance 

with the L 1 norm optimization criterion. The affine projection sign 
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algorithm was proposed in [4] which guaranteed the robustness 

against impulsive noise. In addition, several sign subband adaptive 

filters with variable step-size were introduced to improve the con- 

vergence speed and combat the impulsive noise [5–7] . 

In this brief paper we extend the sign idea into spline adap- 

tive filter and propose a new sign normalised least mean square 

algorithm based on Wiener spline adaptive filter which is called 

SAF-SNLMS. It is derived by minimising the absolute value of the 

a posteriori error and used to identify the Wiener-type nonlinear 

systems. Furthermore, by adjusting the step-size associated with 

the squared value of the impulsive-free error, the variable step-size 

SAF-SNLMS (SAF-VSS-SNLMS) algorithm is proposed. It is demon- 

strated that the proposed algorithms offer better convergence per- 

formance and robustness compared with the conventional SAF al- 

gorithms in the impulsive noise environment. 

2. SAF-NLMS algorithm 

Fig. 1 shows the structure of SAF [1,8] , assuming that the input 

of the SAF at time ( n ) is x ( n ), s ( n ) represents the output of the 

linear network which is given by 

s (n ) = w 

T (n ) x (n ) , (1) 

where w (n ) = [ w (0) , w (1) , · · · , w (M − 1)] T represents the 

weight vector of the FIR filter with length M , and x (n ) = 

[ x (n ) , x (n − 1) , · · · , x (n − M + 1)] T is the input vector of the 

linear network. 

With reference to the spline interpolation scheme in [1] , third- 

order spline curves are applied, thus the output of the whole 
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Fig. 1. Structure of SAF [1,8] . 

system y ( n ) can be expressed as 

y (n ) = ϕ i ( u n ) = u 

T 
n C q i,n , (2) 

where u n = [ u 3 n , u 
2 
n , u n , 1] T , q i,n = [ q i,n , q i + 1 ,n , q i +2 ,n , q i +3 ,n ] 

T is the 

control point vector. The superscript T denotes the transposition 

operation. C is the spline basis matrix whose dimension is 4 × 4. 

Two suitable types of spline basis are Catmul-Rom (CR) spline and 

B-spline whose spline basis matrices are given by 

C B = 

1 

6 

⎡ 

⎢ ⎣ 

−1 3 −3 1 

3 −6 3 0 

−3 0 3 0 

1 4 1 0 

⎤ 

⎥ ⎦ 

, C CR = 

1 

2 

⎡ 

⎢ ⎣ 

−1 3 −3 1 

2 −5 4 −1 

−1 0 1 0 

0 2 0 0 

⎤ 

⎥ ⎦ 

, 

(3) 

and the span index i and the local parameter u n can be defined as 

follows 

u n = 

s (n ) 

�x 
−

⌊
s (n ) 

�x 

⌋
, (4) 

i = 

⌊
s (n ) 

�x 

⌋
+ 

Q − 1 

2 

, (5) 

where �x is the uniform space between two adjacent control 

points, Q is the total number of control point and � · � denotes the 

floor operator. 

Using the Lagrange multiplier method, the cost function for the 

SAF-NLMS can be defined as [8] 

�0 ( q i,n + 1 ) = 

1 

2 u 

T 
n u n 

e 2 (n ) + 

1 

2 

|| q i,n + 1 − q i,n | | 2 , (6) 

where (1 / 2) × [ e (n ) / u 

T 
n u n ] can be viewed as the Lagrange mul- 

tiplier [8] . e ( n ) is the a priori error which can be expressed as 

e (n ) = d(n ) − y (n ) = d(n ) − u 

T 
n C q i,n , and d ( n ) is the desired signal 

which contains impulsive noise. 

Taking the derivative of (6) with respect to q i,n +1 and w n +1 re- 

spectively, and setting them to zeros, we can obtain two recursive 

equations of the tap weights and control points for the NLMS-SAF 

algorithm [8] 

w n +1 = w n + μw 

e (n ) 

u 

T 
n u n + ε 

1 

�x 
˙ u 

T 
n C q i,n x n , (7) 

q i,n + 1 = q i,n + μq 
e (n ) 

u 

T 
n u n + ε 

C 

T u n , (8) 

where μw 

and μq are the step-sizes for the linear network and 

nonlinear network respectively, the small positive constant ɛ is 

used for avoiding zero-division. 

3. Proposed sign SAF-NLMS algorithms 

3.1. SAF-SNLMS algorithm 

The updating equation of q i, n in the proposed sign SAF-NLMS 

algorithm can be formulated by the following constrained opti- 

mization problem: 

min 

q i,n + 1 
| e p (n ) | = | d(n ) − y (n + 1) | = | d(n ) − u 

T 
n C q i,n + 1 | 

subject to || q i,n + 1 − q i,n | | 2 ≤ β2 , 
(9) 

where e p (n ) = d(n ) − u 

T 
n C q i,n + 1 is defined as the a posteriori error, 

β2 is selected to be a small parameter ensuring the updating of 

q i, n dose not change drastically, | · | is the absolute value operation 

and || · || denotes the Eucilidean norm of a vector. 

Then, using the Lagrange multiplier method, the cost function 

can be expressed by 

�( q i,n + 1 ) = | e p (n ) | + ρ0 [ || q i,n + 1 − q i,n | | 2 − β2 ] , (10) 

where ρ0 denotes the Lagrange multiplier. Setting the derivative of 

the cost function �( q i,n + 1 ) with respect to q i,n + 1 equal to zero, we 

have 

q i,n + 1 = q i,n + 

1 

2 ρ0 

C 

T u n sgn [ e p (n )] , (11) 

where sgn [ �] is the sign function. 

Substituting (11) into the constraint condition in (9) , we obtain 

1 

2 ρ0 

= 

β

|| C 

T u n || , (12) 

Note that C 

T is a constant matrix and || C 

T u n || ≤ || C 

T || · || u n ||, 

where || C 

T || is defined as the spectral norm of matrix C 

T , 

|| C 

T || := sup 

u n � =0 

[ || C 

T u n || / || u n || ] . Thus, (12) can be rewritten as 

1 

2 ρ0 

≥ β0 √ 

u 

T 
n u n + ε 0 

, (13) 

where β0 = β/ || C 

T || and ɛ 0 is small positive constant used for 

avoiding zero-division. 

Considering the lower bound of 1/(2 ρ0 ) in (13) , the updating 

equation of q i, n can be derived as 

q i,n + 1 = q i,n + μq 
sgn [ e p (n )] √ 

u 

T 
n u n + ε 0 

C 

T u n (14) 

In a similar manner, the cost function associated with the 

weight vector of FIR filter w n can be formulated as 

J( w n + 1 ) = | e p (n ) | + ρ0 [ || w n + 1 − w n | | 2 − β2 ] , (15) 
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