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a b s t r a c t

In this paper we deal with an optimal filtering problem for uncertain discrete-time systems. Parametric
uncertainties of the underlying model are assumed to be norm bounded. We propose an approach based
on regularization and penalty function to solve this problem. The optimal robust filter with the respective
recursive Riccati equation is written through unified frameworks defined in terms of matrix blocks.
These frameworks do not depend on any auxiliary parameters to be tuned. Simulation results show the
effectiveness of the robust filter proposed.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The Kalman filter (Anderson & Moore, 1979; Kailath, Sayed, &
Hassibi, 2000; Kalman, 1960) has been widely used to solve esti-
mation problems in attitude and position determination, robotics,
communications, control, economics, signal processing, computer
vision and other fields, see for instance Brown and Hwang (1997),
Farrel (2008), Hasan and Azim-Sadjani (1995), Mills and Golden-
berg (1989) and Stevens and Lewis (1991). It was developed in the
1960s based on the assumption that all parameter matrices of the
state-space model are not subject to uncertainties. This assump-
tion guarantees optimal state estimates, essential to describe the
essence of dynamic systems. However, when the model consid-
ered in the filtering process is uncertain this central premise of
the Kalman filter is violated. In this case, its performance can be
severely degraded. One of the first studies on the sensibility of the
Kalman filter in the presence of parameter uncertainties was per-
formed in D’Appolito and Hutchinson (1969).

In the last decades this problem has motivated the develop-
ment of robust estimation approaches to limit the performance
degradation of optimal filters, see for instance Einicke and White
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(1999), Sayed (2001), Shaked and de Souza (1995), Wang and Bal-
akrishnan (2002), Zhou (2010) and references therein. Four rep-
resentative approaches that deal with these recursive estimation
problems were proposed based on H∞ filtering (Hassibi, Sayed, &
Kailath, 1999), set-valued estimation (Bertsekas & Rhodes, 1971),
guaranteed-cost (Petersen & Savkin, 1999; Xie, Soh, & de Souza,
1994), and robust regularized least-squares (Sayed, 2001). All these
approaches were compared in Sayed (2001), where relevant ques-
tions on parameterization, stability, robustness, and online appli-
cations were considered.

The first three filters presented in Bertsekas and Rhodes (1971),
Hassibi et al. (1999), Petersen and Savkin (1999) and Xie et al.
(1994) were not deduced based on regularization techniques. The
existence conditions of them should be checked at every instant
of time when we are dealing with time-varying systems. Auxiliary
parameters should be tuned in order to guarantee stability and
optimal performance.

The filters introduced in Sayed (2001), and also the filters given
in Ishihara and Terra (2008), Ishihara, Terra, and Campos (2005,
2006) and Terra, Ishihara, and Padoan (2007), were deduced based
on regularization approaches. They aim to minimize the worst-
possible residual norm over an admissible class of uncertainties
at each iteration. Similar to the standard Kalman filter, they are
useful to be used in online applications. In these cases, the stability
can be always guaranteed. However, to obtain an optimal robust
performance a Lagrange multiplier should be tuned in order to
minimize a scalar unimodal function.

In this paper, we propose a robust recursive filter for linear
systems subject to norm-bounded parameter uncertainties based
on robust regularized least-squares problem (Sayed &Nascimento,
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1999) and penalty function (Luenberger, 2003). The combination
of both techniques aims to include in a convex cost function all
data related to the state andmeasurement equations whichmodel
the uncertainties of the system. A penalty function parameter
imposes that the argument of the robust regularization vanishes.
As a consequence of this penalization, the minimization of the
cost function is obtained without the need of performing offline
computations.

The robust filter developed in this paper does not depend on
any auxiliary parameter to be tuned, only on the parameters and
weighting matrices known a-priori. The recursiveness provides
a computational advantage, in terms of online implementation,
in virtue of their similarities with the standard Kalman filter.
The stability and convergence are guaranteed for steady-state
estimates.

We present a numerical example to show the evaluation of the
poles of the optimal robust filter proposed in order to demonstrate
the influence of the penalty parameter in the convergence and
stability of the filter (see Eq. (1) in Box I).

The rest of this paper is organized as follows. The filtering prob-
lem dealt with in this paper is defined in Section 2, preliminary
results are shown in Section 3, optimal robust estimates are devel-
oped in Section 4, stability and convergence of the robust filter are
presented in Section 5, numerical examples are given in Section 6
and some concluding remarks are provided in Section 7.

The notation we use in this paper is standard. R is the set of real
numbers, Rn is the set of n-dimensional vectors whose elements
are in R, Rm×n is the set ofm× n real matrices, AT is the transpose
of thematrix A, P ≻ 0 (P ≽ 0) denotes a positive definite (semidef-
inite) matrix, ∥x∥ is the Euclidean norm of x, ∥x∥P is the weighted
norm of x defined by (xTPx)

1
2 , the notation Y TXY = Y TX(·) is

adopted for convenience and In represents n×n identity matrices.

2. Robust estimation problem

Consider the uncertain discrete-time dynamic system:

xk+1 = (Fk + δFk) xk + (Gk + δGk) wk, (2)
zk+1 = (Hk+1 + δHk+1) xk+1 + (Kk+1 + δKk+1) vk+1,

for all k ≥ 0, where xk ∈ Rn is the state vector, zk+1 ∈ Rp is the
output vector, wk is the state noise vector, and vk+1 is the output
noise vector, Fk ∈ Rn×n, Gk ∈ Rn×m, Hk+1 ∈ Rp×n, Kk+1 ∈ Rp×m are
nominal parameter matrices, δFk ∈ Rn×n, δGk ∈ Rn×m, δHk+1 ∈

Rp×n, δKk+1 ∈ Rp×m are uncertain matrices with
δFk δGk


= M1,k∆1


NFk NGk


, ∥∆1∥ ≤ 1,

δHk+1 δKk+1

= M2,k∆2


NHk+1 NKk+1


, ∥∆2∥ ≤ 1,

∆1 and ∆2 are arbitrary contractions. As usual, x0, {wk}, and {vk+1}

are assumed mutually independent zero-mean Gaussian random
variables with variances E{x0xT0} = Π0 ≻ 0, E{wkw

T
k } = Qk ≻ 0,

and E{vk+1v
T
k+1} = Rk+1 ≻ 0, respectively. A recursive optimal

robust filter is proposed based on the solution x̂k+1|k+1(µ) of the
optimization problem:

min
xf

max
δf


J

µ

k (xf , δf )

, (3)

with the cost function J
µ

k (xf , δf ) defined in (1), where xf :=
(xk, wk, vk+1, xk+1) and δf := {δFk, δGk, δKk+1, δHk+1}, Fδ,k = Fk+
δFk,Gδ,k = Gk+δGk,Hδ,k+1 = Hk+1+δHk+1, Kδ,k+1 = Kk+1+δKk+1,
and µ > 0. The matrices Pk|k ≻ 0, Qk, and Rk+1 are weighting
matrices and µ is a penalty parameter. We assume that we have
an a-priori estimation for each step k for the state xk denoted by
x̂k|k along with the observation at time (k+ 1) given by zk+1.

The formulation (3) is motivated by the fact that stochastic
estimation problems can also be solved through deterministic

arguments (e.g., Bryson & Ho, 1975, Cox, 1964, Larson & Peschon,
1966 and Sayed, 2001). Since the filtering problem dealt with in
this paper consists in obtaining the best state estimate in contrast
to the worst influence of uncertainties, the penalty parameter is
able to encompass thewhole uncertainties of the system.However,
if uncertainties are not considered, (3)–(1) reduces to the following
minimization problem:

min
xf


Jµk

xf


(4)

with

Jµk

xf

:=

xk − x̂k|k

T P−1k|k


xk − x̂k|k


+wT

kQ
−1
k wk + vT

k+1R
−1
k+1vk+1

+µ

∥Fkxk + Gkwk − xk+1∥2

+ ∥Hk+1xk+1 + Kk+1vk+1 − zk+1∥2

, (5)

whose solution, whenµ→+∞, approaches to the solution of the
following constrained minimization problem:

min
xf


Jk(xf )


s.t.

xk+1 = Fkxk + Gkwk,
zk+1 = Hk+1xk+1 + Kk+1vk+1,

(6)

with

Jk(xf ) =

xk − x̂k|k

T P−1k|k


xk − x̂k|k


+ wT

kQ
−1
k wk + vT

k+1R
−1
k+1vk+1.

It is shown in this paper that the use of penalty function
method (Luenberger, 2003) is useful to design a recursive robust
filter whose framework has a striking resemblance with the non-
robust Kalman filter. In consequence, the convergence and stability
analysis considered for the standard Kalman filter can be extended
to the robust case.

3. Preliminary results

In this section we revisit the uncertain least-squares problem
solved in Sayed and Nascimento (1999). We present the solution
provided in this reference through an alternative array of matrices.
In addition, we propose a framework based on the combination of
the robust least-squares problem and the penalty functionmethod
(Luenberger, 2003) to deal with the optimal robust filtering
problem.

Consider the following general optimization problem:

min
x

max
δA, δb


∥x ∥2Q + ∥(A+ δA) x− (b+ δb)∥2W


, (7)

where A is a nominal matrix, b is a measurement vector, Q ≻ 0
and W ≻ 0 are weighting matrices, x is an unknown vector, and
δA and δb are perturbations modeled by
δA δb


= H∆


EA Eb


, ∥∆∥ ≤ 1, (8)

with A, b, W , Q, EA, Eb, and H of appropriate dimensions and are
assumed known. For estimation problems, the optimal solution
x̂ and the respective weighting matrix P for an estimation error
e = (x− x̂) can be rewritten in terms of an array of matrices
x̂ P


=

0 0 0 0 0 0 I



×



−Q 0 0 I 0 0 0
0 −Ŵ 0 0 I 0 0
0 0 −λ̂I 0 0 I 0
I 0 0 0 0 0 I
0 I 0 0 0 0 A
0 0 I 0 0 0 EA
0 0 0 I AT ET

A 0



−1

0 0
0 0
0 0
0 0
b 0
Eb 0
0 −I

 , (9)
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