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a b s t r a c t 

Previous studies have demonstrated that integrating spatial information can potentially provide signifi- 

cant improvements for classification of hyperspectral image (HSI). However, it remains a challenging task 

to classify the high-dimensional HSI with limited number of training samples. In this paper, we propose 

a spectral-spatial classification framework based on low-rank tensor learning (lrTL). Unlike the traditional 

vector/matrix-based methods, the proposed lrTL method aims at improving the classification performance 

by naturally treating the HSI as a third-order tensor under the umbrella of multilinear algebra. First, small 

local patches containing the training (or test) samples are extracted from the original HSI cube by su- 

perpixel segmentation to preserve the structural information. Second, the lrTL algorithm is proposed to 

present the local patch of each test sample as a linear combination of all of the training patches. Low- 

rank constraint is enforced on the parameter tensor to capture the global structure of the HSI. Finally, the 

class label of the test sample can be determined by the minimal residual between the local patch con- 

taining the test sample and its approximation from different class subdictionaries. Experimental results 

on three benchmark HSI datasets demonstrate the effectiveness of the lrTL in improving the classification 

performance especially with limited training samples. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Over the past few years, hyperspectral imaging sensors have 

emerged as an important breakthrough in remote sensing for cap- 

turing hundreds of contiguous and narrow bands from the visible 

to near infrared wavelength ranges, thus providing abundant infor- 

mation of the land-covers and drawing much attention in many 

applications, such as agricultural monitoring [1] , mineralogy [2] , 

forestry [3] , and military affairs [4] . In those applications, one of 

the fundamental problem is classification [5] , where each pixel in 

the hyperspectral image (HSI) is assigned to one of the classes 

based on the training samples available for each class. Sufficient 

training samples are usually required to gain satisfactory results 

due to various factors like the Hughes phenomenon, etc. Unfortu- 

nately, it is extremely hard and expensive to make samples with 

labels in reality. Therefore, classifying the high-dimensional HSI 

with limited number of training samples remains an open research 

issue. 

Intensive work has been carried out to design reliable classi- 

fiers for classification of the HSI, e.g. decision trees (DT) [6] , Ad- 
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aBoost [7] , artificial neural networks (ANN) [8] , support vector 

machine (SVM) [9–11] and sparse representation-based classifiers 

(SRC) [12–17] . Among these approaches, the SVM [9–11] classifier, 

which aims at finding an optimal separating hyperplane between 

two classes, has provided very successful results for HSI classifica- 

tion. Moreover, motivated by the rapid development of compressed 

sensing, the SRC [12–17] has attracted much interest and become 

mainstream for HSI classification in the last few years. In addition, 

the low-rank representation (LRR) [18] , which seeks the lowest- 

rank representation from the candidates to represent all vectors 

as the linear combination of the bases in a dictionary, has been 

of growing interest in image processing, as well as in HSI analysis 

[19–24] . Recently, many researches are focus on developing other 

promising classifiers based on ensemble learning (EL) [25,26] , ac- 

tive learning (AL) [27,28] and deep learning (DL) [29,30] . Those 

classifiers can improve the classification performance from differ- 

ent perspectives. 

Notably that the pixels in a small neighborhood are usually 

have similar spectral signatures and belong to the same class, 

many researchers have dedicated to investigating spectral-spatial 

classification which can incorporate the spatial contextual informa- 

tion into the spectral classifiers. For instance, the spatial depen- 

dence can be exploited by various spatial filters, including mor- 
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phological/attribute profiles [31–34] , textural features (e.g. entropy 

[35] ), Gabor filter [36–38] , two-dimensional empirical mode de- 

composition (2D-EMD) [39,40] and two-dimensional singular spec- 

trum analysis (2D-SSA) [41] , etc. The above-mentioned methods 

can extract spatial features from the HSI data before pixel-wise 

classification is performed. One can also combine the spectral and 

spatial information [42] in the classifiers. For example, compos- 

ite spectral-spatial kernel is proposed in [43] to flexibly balance 

both spectral and spatial information in the SVM classification pro- 

cess. Subsequently, the optimal kernel combination of multiple fea- 

tures are exploited by the multiple kernel learning (MKL) methods 

[44–46] , in which an equivalent single kernel is produced from 

a linear combination of various base kernels. A patch alignment 

framework is proposed in [47] to linearly combine multiple fea- 

tures in an optimal way. The spatial information can also be incor- 

porated through a regularization process, such as Markov random 

field (MRF) [48] and additional structured priors, including the 

joint sparsity [49–53] , Laplacian sparsity [54,55] , low-rank prior 

[56–60] and group-based methods [52,61] . Moreover, some other 

approaches take the spatial information into consideration by di- 

viding the pixels into several patches with fixed patch sizes or pro- 

ducing adaptive spatial neighborhoods (e.g. watershed segmenta- 

tion [62,63] , graph cut [64] and superpixel segmentation [65–68] , 

etc.). 

The aforementioned approaches are almost vector or matrix- 

based methods, however, the intuitive representation of a HSI cube 

is a three-dimensional (3D) volumetric array, including one spec- 

tral dimension and two spatial dimensions. Therefore, it is more 

natural to treat the HSI as a 3D cube or tensor [69] to preserve 

the high-order data structure. A series of 3D or tensor-based meth- 

ods have been successfully applied on HSI to conjunctively fuse the 

spatial features with spectral information. For instance, 3D discrete 

wavelet transform (3D-DWT) [70] is applied to extract the texture 

features at different scales, frequencies and orientations. The gray 

level co-occurrence is extended to its 3D version [71] to explore 

the complicated volumetric data and extract discriminant features 

for improved classification results. Tensor discriminative locality 

alignment (TDLA) algorithm is proposed in [72] for feature extrac- 

tion by optimizing the discriminative locality information. Local 

tensor discriminant analysis (LTDA) technique is adopted in [73] for 

spectral-spatial feature extraction. Superpixel tensor sparse coding 

is proposed in [74] to utilize the high-order structure of HSI along 

all dimensions to better understand the data. A 3D convolutional 

neural network (3D-CNN) framework is proposed in [75] to ex- 

tract the deep spectral-spatial features without any preprocessing 

or post-processing. Moreover, the 3D extension of the traditional 

2D-EMD is proposed in our previous work [76,77] to treat the HSI 

cube as a whole entity. It is notable that the 3D or tensor-based 

methods have been shown to be valuable for better performance 

since the joint spectral-spatial structure is effectively represented. 

In this paper, we propose a low-rank tensor learning (lrTL) 

method 

1 [78] for spectral-spatial HSI classification with limited la- 

beled training samples. Different from the vector or matrix-based 

methods, the lrTL method treats the HSI cube as a third-order ten- 

sor by making full use of the multilinear algebra tools. Moreover, 

the low-rank tensor constraint is more flexible and robust to cap- 

ture the global structure of the HSI cube than the sparsity prior 

which strictly enforces the row sparsity and is sensitive to noise. 

The major steps of the proposed method are threefold. First, the 

original HSI data cube is divided into a number of small local 

patches containing the training (or test) samples by superpixel seg- 

mentation [79] . The patches can reflect the joint spectral and spa- 

1 To be exact, lrTL is an algorithm to determine the parameter tensor W (see 

Section 3.2 ). Notably that the lrTL plays the most important role in the proposed 

classification method, we call our proposed method as lrTL for simplicity. 

tial correlations of the HSI. Then, the lrTL algorithm is proposed to 

represent each patch containing the test sample as a linear combi- 

nation of training patches. In this step, the parameter tensor is en- 

forced to have low-rank property. A two-step approach is adopted 

to solve the optimization problem. As soon as the low-rank param- 

eter tensor is obtained, the error residuals of each class are used to 

determine the class label of the test sample. To sum up, the main 

contributions for this work lie in the following four aspects: 

• We obtain the small local patches by superpixel segmentation, 

which flexibly identifies the spatial neighbors of the training (or 

test) samples; 
• We obey the 3D natural of the HSI cube by third-order tensor 

representation, which helps to preserve the joint spectral and 

spatial information of the pixels; 
• We capture the global structure of the HSI by low-rank con- 

straint, which provides an effective tool for bringing discrimi- 

nation information in HSI classification; 
• We classify the unlabeled test samples by minimal error resid- 

uals in the proposed lrTL algorithm, which doesn’t require any 

additional classifiers (e.g. SVM). 

The rest of the paper is organized as follows. Secion 2 briefly 

describes the related works, including the multilinear algebra tools 

and low-rank representation. Section 3 introduces the proposed 

lrTL method for HSI classification. Section 4 reports the experimen- 

tal results. Finally, conclusions are drawn in Section 5 . 

2. Related works 

In this section, we briefly describe some background on the 

multilinear algebra and low-rank representation. 

2.1. Multilinear algebra tools 

A tensor [80] is an array of numbers that transform linearly un- 

der different coordinate transformations, which can be denoted by 

an underlined boldface capital letter, e.g. A ∈ R 

I 1 ×I 2 ×... ×I N , with N 

refers to the order of A and the n th order of the tensor is of size 

I n ( n = 1 , 2 , . . . , N). Specifically, a third-order tensor can be repre- 

sented as A ∈ R 

I 1 ×I 2 ×I 3 , while a matrix (i.e. 2D array) can be de- 

noted by boldface uppercase letter, e.g. A ∈ R 

I 1 ×I 2 , and a vector 

can be expressed by boldface lowercase letter, e.g. a ∈ R 

I . An el- 

ement (i 1 , i 2 , . . . , i N ) of the tensor A is denoted by a i 1 ,i 2 , ... ,i N , where 

1 ≤ i n ≤ I n and 1 ≤ n ≤ N . Moreover, the Frobenius norm of a tensor 

is calculated by ‖ A ‖ F = 

√ ∑ 

i 1 ,i 2 , ... ,i N 
| a i 1 ... i N | 2 . 

Given a matrix A , the rank- r projection p ( A , r ) is defined as the 

projection of A to the top- r spaces. In merit of the singular value 

decomposition (SVD) of A (i.e. A = U �V 

T ), the p ( A , r ) can be ob- 

tained by p( A , r) = U r �r V r 
T 
, which is the top- r truncated SVD of 

A . 

A sub-tensor is formed by restricting the indices to certain 

subsets of values. Particularly, the mode- n fiber of a tensor A ∈ 

R 

I 1 ×I 2 ×... ×I N is a vector determined by fixing all indices to sin- 

gle values except i n . The mode- n unfolding (called also mode- n 

matricization) of a tensor A ∈ R 

I 1 ×I 2 ×... ×I N yields a matrix A (n ) ∈ 

R 

I n ×Ī n ( ̄I n = 

∏ 

m � = n I m 

) , whose columns are the corresponding mode- 

n fibers rearranged in a certain order, i.e. A (1) ∈ R 

I 1 ×I 2 I 3 ... I N , A (2) ∈ 

R 

I 2 ×I 1 I 3 ... I N , etc. Moreover, the n -rank of a tensor A is determined by 

the matrix rank of the mode- n unfolding rank( A ( n ) ), and the sum- 

n -rank of a tensor A is calculated by the summation of n -rank, that 

means 

sum- n -rank ( A ) = 

N ∑ 

n =1 

rank ( A (n ) ) (1) 
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