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a b s t r a c t 

This work proposes a multi-dimensional frequency and amplitude estimator tailored for noise corrupted 

signals that have been clipped. Formulated as a sparse reconstruction problem, the proposed algorithm 

estimates the signal parameters by solving an atomic norm minimization problem. The estimator also 

exploits the waveform information provided by the clipped samples, incorporated in the form of linear 

constraints that have been augmented by slack variables as to provide robustness to noise. Numerical ex- 

amples indicate that the algorithm offers pref erable performance as compared to methods not exploiting 

the saturated samples. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Many forms of practical measurements suffer from clipping, for 

instance due to limitations in the dynamic span of the analog-to- 

digital (AD) converter, possibly necessitated by needs of resolu- 

tion, or by additive interference offsetting the signal unexpectedly. 

In such cases, the measured signal is occasionally saturated at its 

minimum or maximum values, typically requiring these samples to 

be treated as missing. One may attempt to reconstruct such sam- 

ples using various forms of interpolation or by using estimators 

of the relevant signal information that allow for missing samples 

(see, e.g., [1–4] ). There have also been methods proposed for us- 

ing gain masks in the sampling stage as to mitigate the effects of 

clipping [5] , as well as post-processing methods for countering the 

harmonic distortion induced by clipping [6] . 

More recently, several reconstruction schemes exploiting an as- 

sumed signal sparsity have been proposed. In [7] , Adler et al. ex- 

tend the concept of image inpainting (see, e.g., [8] ) to audio sig- 

nals in order to reconstruct the clipped samples. In [9] , Defraene 

et al. utilize a compressed sensing formulation, as well as ex- 

ploit features of the human auditory system, in order to increase 

the perceived signal quality. Other approaches include iterative 

hard thresholding [10] , greedy methods [11] , smooth regulariza- 

tion [12] , social sparsity exploiting temporal dependence [13] , and 
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non-negative matrix factorization [14] , whereas theoretical recov- 

ery guarantees have been studied in [15] . The related field of es- 

timation and reconstruction of 1-bit signals is also attracting in- 

terest (see, e.g., [16,17] ). Such signals only retain the sign of the 

sampled analog waveform, which can be seen as an extreme form 

of clipping. The problem of signal reconstruction of more generally 

quantized measurements has been explored in [18] . 

In this work, we propose an algorithm that exploits the as- 

sumed a priori structure of the signals of interest. This structure 

may, for instance, be that the signal can be well modelled as a 

sum of decaying sinusoids, as is common in areas such as spec- 

troscopy, or by some other well structured signal. By formulating 

an estimator of the unknown parameters detailing the assumed 

signal structure, taking into account both the available and the sat- 

urated samples, we propose a sparse reconstruction algorithm that 

is able to exploit the information available in the saturated sam- 

ples, while still being robust to the presence of additive noise. Ro- 

bustness against noise is achieved by not enforcing hard clipping 

constraints, i.e., the proposed estimator does not constrain the re- 

constructed waveform to saturate at precisely the same samples as 

the observed signal, as this would make the estimator vulnerable 

to amplitude bias. Instead, the clipping information is taken into 

account by adding linear constraints, relaxed using slack variables, 

allowing also the noise to cause saturation. 

Assuming that the measured signal consists of relatively few 

signal components, the algorithm may be constructed as a sparse 

reconstruction problem using a signal dictionary formed using the 

assumed signal waveforms, taking into account the saturation in- 

formation of the clipped samples. In order to allow the signal of 

interest to be formed over a continuous parameter space, we ex- 

press the resulting optimization as an atomic norm minimization. 

The atomic norm has previously been successfully exploited to de- 
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velop estimators allowing for off-grid components (see, e.g., [19–

21] ). Here, we propose a similar formulation to exploit the struc- 

ture of the assumed signal, while incorporating information of the 

saturated samples. We note that an approach reminiscent of ours 

was recently proposed in [22] for line spectrum estimation from 1- 

bit samples, although that work considered only noise-free signals. 

If considering signals with further structure, the herein proposed 

framework may be extended correspondingly. For instance, in au- 

dio applications, signals may often be well modeled as a sum of 

harmonically related sinusoids. For such signals, one may also ex- 

ploit the expected harmonic structure by instead using the atomic 

norm framework developed in [23,24] . 

In summary, the proposed algorithm allows for an efficient ex- 

ploitation of the 1-bit information present in saturated periodic 

one- or multi-dimensional signals, allowing for both accurate pa- 

rameter estimation and signal reconstruction. Further extensions to 

non-periodic or non-stationary signals may be formed by general- 

izing the atomic norm formulation to such signals. 

This paper is organized as follows. In Section 2 , we state 

the considered problem of estimating clipped signals and present 

the proposed estimator, where the one-dimensional and multi- 

dimensional cases are considered in Sections 2.1 and 2.2 , re- 

spectively. Section 3 evaluates the performance of the proposed 

method using simulation studies, also considering the impact of 

the choice of regularization parameters. Section 4 concludes upon 

the work. 

2. Proposed estimator 

In this section, we present the proposed estimator. We begin 

by initially presenting the one-dimensional (1-D) version for real- 

valued sinusoidal data, and then generalize the formulation to al- 

low for both complex and multi-dimensional data. 

2.1. One-dimensional case 

To illustrate the proposed algorithm, we assume that the sig- 

nal of interest, y unclipped , consists of N samples of a sum of K real- 

valued sinusoids corrupted by an additive Gaussian noise, such 

that 

y unclipped = Ad + e (1) 

where d ∈ R 

K×1 denotes the amplitude vector, e the additive noise, 

and 

A = 

[
a 1 . . . a K 

]
a k = 

[
cos (2 π f k t 1 + φk ) . . . cos (2 π f k t N + φk ) 

]T 

with f k and φk denoting the k th frequency and phase, respectively, 

and t k the time index of the k th sample. Here, we assume that 

the measured signal is y , and that y unclipped is unavailable. For 1-D 

real-valued signals, we define clipping as follows. 

Definition 2.1. Clipping of real-valued data. 

The n th sample of a real-valued 1-D signal, y 
unclipped 
n , is sub- 

jected to clipping if 

| y unclipped 
n | > γ (2) 

and the corresponding measured value will be y n = 

γ sign (y 
unclipped 
n ) , where γ ≥ 0 is referred to as the clipping 

level or clipping limit. �

Using this definition, let �−, �+ , and � denote the indices 

of y that are clipped from below, from above, and all the non- 

clipped indices of y , respectively. Correspondingly, for any vector 

b , let b � denote the vector constructed from b using only the el- 

ements corresponding to the indices in �. Thus, y � = y 
unclipped 
�

, 

y �− = −γ 1 , and y �+ = γ 1 , where 1 is a vector of ones, of ap- 

propriate dimension. In order to reconstruct the signal of interest 

successfully, one needs to estimate the signal parameters, here the 

frequencies, amplitudes, and phases, as well as the model order, K , 

all which are assumed to be unknown. The typical way of deal- 

ing with the clipped samples in y is to treat these as missing data 

points, and simply omit them from the measurement vector. The 

unknown parameters, and the model order, are then estimated us- 

ing a technique that allows for missing samples, such as, e.g., [25] . 

It is well known that dictionary techniques using a predefined 

grid suffer when the true parameters are not on the grid. To al- 

leviate this problem, and also account for the missing samples, 

we here make use of an atomic norm formulation. Defining an 

atom set as A = { a ( f, φ) : f ∈ [0 , 1] , φ ∈ [0 , 2 π) } , with atoms 

[ a ( f, φ)] t = cos (2 π f t + φ) , a signal containing a sum over K sinu- 

soids may be expressed as 

y � = 

K ∑ 

k =1 

d k a ( f k , φk ) (3) 

The atomic norm for a signal y is defined as 

|| y || A = inf { t > 0 : y ∈ t conv (A ) } 

= inf 
d k ≥0 ,φk ∈ [0 , 2 π) , f k ∈ [0 , 1] 

{ ∑ 

k 

d k : y = 

∑ 

k 

d k a ( f k , φk ) 

} 

where conv( A ) denotes the convex hull of A . This formulation may 

be interpreted as finding the sparsest linear combination of atoms 

that constitutes the signal. In [20] , it was shown that the atomic 

norm denoising, i.e., the analogous problem with additive noise, 

may be expressed as the (computationally tractable) semidefinite 

program (SDP) 

minimize 
x, z , u 

x + u 1 + 

1 

2 

‖ 

y � − z �‖ 

2 
2 

subject to 

[
x z H 

z T (u ) 

]
� 0 

T (u ) ∈ T 

N×N 

(4) 

where T 

N×N denotes the set of all Hermitian N × N Toeplitz ma- 

trices, with T ( u ) denoting the Toeplitz matrix with u on its first 

column. Here, u 1 denotes the first element of the vector u . Since 

the problem in (4) is an SDP, it is also convex, and may as a result 

be computed using solvers, such as, e.g., CVX [26] , yielding a com- 

putational complexity of O(N 

3 ) . The third term in (4) penalizes the 

difference between the observed samples for the measured signal 

and the optimization variable, z , corresponding to the noise-free, 

non-clipped signal. Solving this optimization problem will yield a 

signal, z , where the missing values have been estimated, a scalar, x , 

corresponding to the sum of the absolute values of the amplitudes, 

and the vector u that determines the Toeplitz matrix T ( u ), from 

which, using, e.g., a Vandermonde decomposition, the resulting fre- 

quency estimates may be found. This approach has been shown to 

be very efficient in both retrieving the missing samples, as well 

as estimating the frequencies [20,27] . However, it should be noted 

that the approach treats the clipped samples as missing, and is 

thus wasteful in the sense that the information that the measured 

signal is above (or below) the clipping limit is not incorporated in 

the optimization problem. 

To alleviate this, we proceed to extend the minimization to 

also incorporate this information in the saturated samples. Clearly, 

since a clipped sample may not always indicate that the true wave 

form should be clipped, this should be taken into consideration 

when forming the optimization problem. This discrepancy appears 

when the true wave form is inside the measurable region, but the 

noise pushes the sample over (under) the saturation limit. To in- 

corporate this effect, we introduce the variables ε+ and ε−. These 
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