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a b s t r a c t 

Conventionally, sparsity-aware multi-sensor multi-target tracking (MTT) algorithms comprise a two-step 

architecture that cascades group sparse reconstruction and MTT algorithms. The group sparse reconstruc- 

tion algorithm exploits the a priori information that the measurements across multiple sensors share a 

common sparse support in a discretized target state space and provides a computationally efficient tech- 

nique for centralized multi-sensor information fusion. In the succeeding step, the MTT filter performs 

the data association, compensates for the missed detections, removes the clutter components, and im- 

proves the accuracy of multi-target state estimates according to the pre-defined target dynamic model. 

In a recent work, a novel technique was proposed for sparsity-aware multi-sensor MTT that deploys a re- 

cursive feedback mechanism such that the group sparse reconstruction algorithm also benefits from the 

a priori knowledge about the target dynamics. As such, it is of significant interest to compare the tracking 

performance of these methods to the optimal multi-sensor MTT solution, with and without considering 

the missing samples. In this paper, we analytically evaluate the Cramer-Rao type performance bounds for 

these two schemes for sparsity-aware MTT algorithms and show that the recursive learning structure out- 

performs the conventional approach, when the measurement vectors are corrupted by missing samples 

and additive noise. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

In recent years, sparsity-aware multi-target tracking (MTT) al- 

gorithms have attracted significant research interest. Researchers 

have proposed several techniques (e.g., [2–5] ) to exploit the a priori 

knowledge that there is only a small number of targets to be 

tracked over a pre-defined surveillance area, and hence, the mea- 

surements are sparse, either in their natural basis or some other 

sparsifying basis. Recently, the hierarchical Kalman filter has been 

proposed in [6] to track the dynamic sparse signals, which incor- 

porates the fundamentals of sparse Bayesian learning into the tra- 

ditional Kalman filtering, where the output of the tracking filter 

is exploited to update the covariance matrix of the process noise, 
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thereby enforcing sparsity constraint into the traditional Kalman 

filtering framework. 

Conventionally, the sparsity-aware MTT algorithm cascades the 

sparse signal reconstruction algorithm and the multi-target track- 

ing algorithm in succession. First, the sparse reconstruction algo- 

rithm is exploited to estimate the multi-target state, and in the 

succeeding step, multi-target state estimates are fed as inputs to 

the MTT filters for data association, clutter removal, compensation 

for missed detections, and reduction in the localization error. For 

multi-sensor MTT [7] , group sparse reconstruction algorithms have 

been deployed as computationally efficient techniques for a cen- 

tralized multi-sensor information fusion. The a priori information 

that the measurements across multiple sensors share a common 

sparse support in a discretized target state space allows for the 

exploitation of the group sparse reconstruction. As such, the out- 

put of the group sparse reconstruction algorithm obtained in the 

form of instantaneous estimates of the multi-target states is fed as 

the input to the MTT filters. The overall performance of these tech- 

niques relies on the ability of the group sparse reconstruction algo- 

rithm to accurately and reliably estimate the instantaneous multi- 

target states. 

https://doi.org/10.1016/j.sigpro.2017.11.014 

0165-1684/© 2017 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.sigpro.2017.11.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.11.014&domain=pdf
mailto:ydzhang@temple.edu
https://doi.org/10.13039/100006602
https://doi.org/10.1016/j.sigpro.2017.11.014


S. Subedi et al. / Signal Processing 145 (2018) 68–77 69 

In many practical applications, the observations suffer from a 

high proportion of missing samples, due to fading, shadowing or 

removal of impulsive noise, and is corrupted by a strong additive 

noise, rendering it difficult to accurately estimate the multi-target 

states using group sparse reconstruction-based methods. Recently, 

a novel technique is proposed in [8] for sparsity-aware multi- 

sensor MTT that deploys a recursive feedback mechanism such 

that the group sparse reconstruction algorithm and the conven- 

tional MTT filter interplay and learn from each other. Such recur- 

sive learning approach creates a global learning architecture that 

enables the group sparse reconstruction algorithm to benefit from 

the a priori knowledge about the target dynamics. Numerical re- 

sults presented in [8] in terms of the optimal sub-pattern assign- 

ment (OSPA) metric [9] show that the methods proposed therein 

enable a significant performance improvement over the conven- 

tional approach through such a feedback mechanism. This is par- 

ticularly evident when the measurement vectors comprise a high 

percentage of missing samples and are corrupted by strong addi- 

tive noise. 

The unconditional posterior Cramer–Rao lower bound (PCRLB) 

[10] provides a theoretical performance limit of any estimator for 

a non-linear filtering problem under the Bayesian framework. In 

[11] , the authors derived a recursive approach to calculate the se- 

quential PCRLB for a general multi-dimensional discrete-time non- 

linear filtering problem. Several variants of the PCRLB have been 

proposed in the literature to make the PCRLB more adaptive. For 

instance, in [12–14] , the PCRLB is conditioned on the measure- 

ments up to a reset initial time in lieu of the absolute initial state 

as in the vanilla PCRLB definition. Instead of representing the pos- 

terior probability density function of the system state at the re- 

set initial time non-parametrically by a set of random particles as 

in [12] , a systematic recursive approach is used to derive the ex- 

act conditional PCRLB based on first principles in [15] . Two other 

online conditional PCRLBs are proposed in [16] as alternatives to 

the one proposed in [15] , and are shown to provide similar re- 

sults through numerical examples. These variants have rendered 

the prior knowledge of the initial system state more useful and 

relevant in the PCRLB evaluation, particularly in situations when 

the state process noise is high and thus the prior knowledge re- 

garding the system state at the initial time quickly becomes irrel- 

evant. However, to the best of our knowledge, none of the exist- 

ing works provide a conditional PCRLB for situations where the 

measurement is unreliable due to strong additive noise and/or a 

high proportion of missing samples. As such, the existing literature 

still lacks the PCRLB analysis for sparsity-aware multi-sensor MTT 

problems. 

In this paper, we analytically evaluate the performance bounds, 

for the two aforementioned architectures for sparsity-aware multi- 

sensor MTT, namely, the conventional architecture and the global 

learning architecture. We quantify the degradation in the overall 

tracking performance when the measurement vectors suffer from 

a high percentage of missing samples and strong additive noise. 

First, we derive the performance bounds for the estimation of the 

instantaneous multi-target state exploiting the group sparse signal 

reconstruction algorithm in the case of a signal model comprising 

missing samples and additive white Gaussian noise perturbation 

[17] . Assuming an optimal estimation of the instantaneous multi- 

target state by the group sparse reconstruction algorithm under 

the given signal conditions, we evaluate the performance bound for 

the MTT algorithm. Next, we analytically evaluate the performance 

improvement achieved by implementing the recursive learning ar- 

chitecture, where the a priori knowledge about the target dynamics 

is exploited at the sparse reconstruction stage through a feedback 

mechanism. To summarize, the key contributions of this paper are 

follows: 

1. We analytically quantify the effect of missing samples and ad- 

ditive noise on the performance of sparsity-aware multi-sensor 

MTT algorithms. 

2. We evaluate the limits on the performance improvement that 

can be achieved by implementing the recursive learning ar- 

chitecture assuming optimal estimation at both stages - group 

sparse reconstruction and MTT. 

3. We analyze the boundary conditions for which the recursive 

learning architecture guarantees a convergence and assess the 

effect of relative weight on the achievable performance im- 

provement. 

The remainder of the paper is organized as follows. 

Section 2 describes the target dynamic model, presents the 

signal model, considering the effect of missing samples and addi- 

tive white Gaussian noise. Section 3 presents a high-level overview 

of the two approaches for sparsity-aware MTT. Section 4 presents 

the analytical comparison of the performance bounds for these 

two approaches. Section 5 provides simulation results in the case 

of a multi-target tracking in a multi-static passive Doppler sensor 

network, and finally conclusions are drawn in Section 6 . 

Notations: A lower (upper) case bold letter denotes a vector 

(matrix). Specifically, I N and 0 N denote the N × N identity and 

zero matrices, respectively. ( ·) T and ( ·) H , respectively, denote trans- 

pose and Hermitian operations, and ◦ denotes the Hadamard prod- 

uct. diag( ·) forms a diagonal matrix from a vector, tr( ·) stands 

for matrix trace, and Re( ·) denotes the real part of a com- 

plex variable. E( ·) stands for the expectation operation. C 

m ×n and 

C 

m ×1 represent an m × n -dimensional complex matrix and an m - 

element complex vector, respectively. Likewise, R 

m ×1 represents 

an m -element real vector. ‖ · ‖ n denotes the l n -norm of a vector, 

and x ∼ N (a, b) and x ∼ CN (a, b) , respectively, denote variable x 

to be real and complex Gaussian distributed with mean a and 

variance b . 

2. Signal model 

2.1. Target dynamics 

We consider the problem of tracking K moving targets, where K 

is unknown. The ground truth state vector associated with the k th 

target at the t th observation instant is represented as θt,k ∈ R 

D ×1 , 

for k = 1 , · · · , K and t = 1 , · · · , T . Herein, we refer to the observa- 

tion instants as the time instants at which the sensors report their 

measurement vectors to the fusion center. Note that each mea- 

surement comprises several discrete-time samples of the waveform 

received at the sensor. The number of samples per measurement 

vector depends on the observation interval and the sampling rate 

deployed at the sensor. At each observation instant, the ground 

truth state set is defined as �t � [ θ
T 
1 ,t , · · · , θ

T 
K,t ] 

T . The target dy- 

namics is assumed to evolve according to a linear Gaussian model, 

such that 

θt,k = F θt−1 ,k + w t,k , (1) 

where F is the state transition matrix and w t,k ∼ N (0 , Q ) is the 

process noise modeled as additive white Gaussian. The definitions 

of the state transition matrix F and the covariance matrix of the 

process noise Q depend on the application. Application examples 

will be provided in Section 5 . 

2.2. Observation with missing samples 

We consider R receivers monitoring the region of interest. The 

multi-target states are represented as a multi-component signal in 

the observation space at the r th receiver through a deterministic 
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