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a b s t r a c t 

Several signal processing problems can be written as the joint eigenvalue decomposition (JEVD) of a set 

of noisy matrices. JEVD notably occurs in source separation problems and for the canonical polyadic de- 

composition of tensors. Most of the existing JEVD algorithms are based on a block coordinate procedure 

and require significant modifications to deal with complex-valued matrices. These modifications decrease 

algorithms performances either in terms of estimation accuracy of the eigenvectors or in terms of compu- 

tational cost. Therefore, we propose a class of algorithms working equally with real- or complex-valued 

matrices. These algorithms are still based on a block coordinate procedure and multiplicative updates. 

The originality of the proposed approach lies in the structure of the updating matrix and in the way the 

optimization problem is solved in C 

N×N . That structure is parametrized and allows to define up to five 

different JEVD algorithms. Thanks to numerical simulations, we show that, with respect to the more ac- 

curate algorithms of the literature, this approach improves the estimation of the eigenvectors and has a 

computational cost significantly lower. Finally, as an application example, one of the proposed algorithm 

is successfully applied to the blind source separation of Direct-Sequence Code Division Multiple Access 

signals. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Joint EigenValue Decomposition (JEVD), also called joint diago- 

nalization by similarity, is an important issue for a number of sig- 

nal processing applications such as directions of arrival estimation 

[1] , joint angle-delay estimation [2] , multi-dimensional harmonic 

retrieval [3] , Independent Component Analysis (ICA) [4–8] , Canon- 

ical Polyadic Decomposition (CPD) of tensors [9–11] and statistics 

[12] . 

JEVD problems occur when a set of K non-defective matrices 

M 

( k ) shares the same basis of eigenvectors: 

M 

(k ) = A D 

(k ) A 

−1 
, ∀ k = 1 , . . . , K (1) 

where the invertible matrix A ∈ C 

N×N is the common matrix of 

eigenvectors and the K matrices D 

(k ) ∈ C 

N×N are all diagonal and 

contain the eigenvalues of corresponding M 

( k ) matrices. The goal is 

then to estimate A or A 

−1 from matrices M 

( k ) . 
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Naive approaches consist in considering the K eigenvalue de- 

compositions separately or a linear combination of those. The main 

problem is then that if some eigenvalues are degenerated or very 

close, the corresponding eigenvectors cannot be correctly identi- 

fied. Moreover, in practice this problem is accentuated by the pres- 

ence of noise because small perturbations of a matrix can strongly 

affect its eigenvectors [9,13] . As a consequence, a recommended so- 

lution is to decompose the whole matrix set jointly. One usual way 

of doing is to make matrices M 

( k ) as diagonal as possible within 

the same change of basis. That’s why JEVD can be seen as a joint 

diagonalization problem. More precisely we speak of joint diago- 

nalization by similarity in contrast with the Joint Diagonalization 

by Congruence (JDC) problem for which the inverse of the matrix 

A in (1) is replaced by the conjugate transpose of A . Of course, JDC 

and JEVD are equivalent if A is a unitary matrix but this is not nec- 

essary the case here. Tensor CPD is a common application to JDC 

and JEVD [14,15] . However JEVD and JDC are two different math- 

ematical problems that appear in distinct applications. Moreover 

the JEVD can be seen has a more general problem since the JDC 

can be very easily rewritten into a JEVD [16] while it seems that 

the opposite is not true. Hence JEVD deserves a particular atten- 

tion and specific algorithms although these are often inspired by 

JDC algorithms. 
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Indeed most of them resort to an iterative block coordinate pro- 

cedure adapted from the original Jacobi method [17] . This means 

that matrix A (or A 

−1 ) is built by successive multiplicative up- 

dates. Each update involves a small set of parameters (with respect 

to N 

2 ) that allows to build the updating matrix. JEVD algorithms 

differ one from another in the way these parameters are defined 

and computed. Several families of algorithms can then be identi- 

fied. Algorithms of the first family look for the updating matrix in 

the form of a QR factorization [3,18] . Actually these methods only 

aim to estimate the eigenvalues by triangulazing the matrix set, 

thereby these are not considered here. More recently, three algo- 

rithms based on the polar decomposition were proposed: SHear 

RoTation algorithm (SH-RT) [19] , Joint Unitary Shear Transforma- 

tion (JUST) [20] and Joint Diagonalization algorithm based on Tar- 

geting hyperbolic Matrices (JDTM) [11] . When dealing with real- 

valued matrix sets, these algorithms build the updating matrix as 

a product of an orthogonal rotation matrix and a symmetric ma- 

trix. These two matrices are estimated separately one after an 

other. Following the idea of Souloumiac in [21] , each matrix is 

parametrized by a rotation or an hyperbolic rotation angle. Thanks 

to simple trigonometric and hyperbolic trigonometric properties 

the optimization problems can then be rewritten as a simple EVD 

of a 2 × 2 matrix. The extension of these methods to the complex 

field involve 2 reals angles and 2 real hyperbolic angles to define 

the unitary and the hermitian matrix. The estimation of the hyper- 

bolic angles is not an easy task. In JUST, a suboptimal scheme is 

used since the angles are estimated separately. In addition the first 

one is approximated. In JDTM both angles are estimated conjointly 

in some optimal way but the procedure requires to find the zeros 

of an eleventh degree polynomial. Finally a third family of algo- 

rithms based on the LU factorization and called Joint Eigenvalue 

decomposition algorithms based on Triangular matrices (JET) was 

introduced in [8] . Here the updating matrix is an elementary lower 

triangular matrix. For complex valued matrix sets, real and imagi- 

nary parts of the updating matrix are not estimated conjointly but 

one after the other. Hence, at each (real or imaginary) update, the 

set of available solutions is limited to the set of real matrices or to 

the set of imaginary matrices alternatively. 

As it has just been seen the extension of the previous meth- 

ods to the complex case implies to map C to R 

2 and involves 

some suboptimal optimization schemes. Few algorithm compar- 

isons have been made in the complex case so far. More precisely, 

it has been shown in [8] that in this case JDTM requires many it- 

erations to converge hence a very high computational cost with 

respect to JET algorithms. In addition, JET performs better than 

JDTM when the noise level is low. However JET performances de- 

crease significantly with the noise level. As a consequence we pro- 

pose here a new class of algorithms that work equally for real- or 

complex-valued matrices. 

The proposed approach has common points with the previous 

methods: it is also based on a block coordinate procedure and 

the updating matrix is still computed as a product of factorization 

matrices. However its originality is twofold. First, these matrices 

are estimated conjointly from a simple eigenvalue decomposition 

of a 2 × 2 matrix. This strategy is inspired from [22] for the JDC 

problem. Second, we propose a parametrized expression of the up- 

dating matrix that cover different matrix factorizations. We then 

show that we can switch from one matrix factorization to another 

by changing only one parameter. This allows to define a class of 

five algorithms sharing the same structure. One of these algorithms 

was briefly presented in [23] . Moreover, we have the possibility to 

pass from one version to another at each new iteration of the op- 

timization process hence defining a sixth algorithm. By estimating 

conjointly all the parameters of the updating matrix, we expect a 

better trade-off between convergence speed and robustness to the 

noise level than the above mentioned approaches. In addition, our 

approach allows to reduce the numerical complexity of the block 

coordinate step with respect to classical polar decomposition based 

algorithms. Eventually, this approach has the advantage to work in 

C 

N×N throughout the process. In other words, no modifications are 

required to deal with real- or complex-valued matrices. 

The paper is organized as follow: in Section 2 , we recall the 

principle of block coordinate JEVD algorithms. In Section 3 , we 

describe the proposed method and the algorithms. In Section 4 , 

we compare the numerical complexity of these algorithms to the 

ones of the existing algorithms. Section 5 is dedicated to numeri- 

cal simulations. We have evaluated the performances of the pro- 

posed algorithms to compute the JEVD of complex matrices ac- 

cording to several scenarios. Comparisons are made with all the 

other JEVD algorithms. Finally in Section 6 , we show how the pro- 

posed approach can be used to achieve the blind source separation 

of telecommunication signals. 

Notations. In the following scalars are denoted by a lower case 

( a ), vectors by a boldface lower case ( a ) and matrices by a boldface 

upper case ( A ). a i is the i -th element of vector a and A i, j is the ( i, 

j )-th element of matrix A . Operator || •|| is the Frobenius norm of 

the argument matrix. Real and complex fields are denoted by R 

and C respectively. Operator ZDiag {•} sets to zero the diagonal of 

the argument matrix. I is the identity matrix. Modulus and con- 

jugate of any complex number z are denoted by | z | and z̄ respec- 

tively. k ∈ [1 , K] N 

is the sequence of natural integers from 1 to K . 

2. A block coordinate procedure 

The JEVD problem consists in finding a matrix, B , which jointly 

diagonalizes the given set of matrices M 

( k ) in equation (1) . B is 

called the diagonalizing matrix and can be considered as an es- 

timate of A 

−1 up to a permutation and a scaling indeterminacy. 

This indeterminacy is inherent to the JEVD problem. An important 

uniqueness result has been shown in [9] . Let us define matrix �
as 

� = 

⎛ ⎜ ⎝ 

D 

(1) 
11 

· · · D 

(K) 
11 

. . . · · ·
. . . 

D 

(1) 
NN 

· · · D 

(K) 
NN 

⎞ ⎟ ⎠ 

. (2) 

The JEVD is unique up to a permutation and a scaling indetermi- 

nacy if and only if the rows of � are two by two distinct ( i.e. ∀ m, 

n with m � = n , ω m. − ω n. � = 0 where ω m . and ω n . are the m 

th and 

the n th rows of � respectively). In the following, we will always 

assume that this uniqueness condition is satisfied. 

We want to build B such that matrices ̂ D 

(k ) 
defined by: ̂ D 

(k ) = B M 

(k ) B 

−1 , ∀ k ∈ [1 , K] N 

(3) 

are as diagonal as possible. The method is iterative. At each itera- 

tion, B is multiplicatively updated with a matrix X in the following 

way: 

B ← X B (4) 

and the set of matrices ̂ D 

(k ) 
is consequently updated as: ̂ D 

(k ) ← X ̂

 D 

(k ) 
X 

−1 , ∀ k ∈ [1 , K] N 

. (5) 

We expect that at the end of the iterative process, matrices ̂ D 

(k ) 

are diagonalized and BA is close to the product between an in- 

vertible diagonal matrix and a permutation matrix (This closeness 

can be measured thanks to the criterion proposed in [6] ). B is ini- 

tialized from an appropriate initial guess B 0 and before the first 

iteration we set ̂ D 

(k ) ← B 0 M 

(k ) B 0 
−1 , ∀ k ∈ [1 , K] N 

. The choice of 

B 0 will be discussed in Section 5 . 

At each iteration, X is computed thanks to a block coordinate 

procedure. Here, it means that X is built from a set of N(N − 1) / 2 
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