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a b s t r a c t

This paper investigates the stabilization problem for neutral time-delay systemswith actuator saturation.
Different from the existing techniques, the auxiliary time-delay feedback is introduced for the first
time in this paper. Based on such a technique, the saturation nonlinearity is represented as the convex
combination of state feedback and auxiliary time-delay feedback. By employing free-weighting matrix
technique and Jensen integral inequalities, and performing the accurate estimation of the lower bounds
of L–K functionals, the improved delay-dependent local stabilization conditions are proposed in terms of
linearmatrix inequalities (LMIs). Numerical examples illustrate the reduced conservatismof the proposed
conditions in this paper.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Time-delays are frequently encountered in various practical
systems, such as chemical engineering systems, biological sys-
tems andmanufacturing processes (Gu, Kharitonov, & Chen, 2003).
There are two types of time-delay systems, i.e., retarded type and
neutral type. The retarded type contains delays only in its states,
while the neutral type contains delays in both its states and its
derivatives of the states. On the other hand, it is well recognized
that LMI-based approaches are more convenient for solving cor-
responding synthesis problems, and delay-dependent results are
generally less conservative than delay-independent ones espe-
cially when the size of delay is small (Xu & Jam, 2008). During
the past two decades, several important techniques have been pro-
posed to obtain LMI-based delay-dependent analysis and synthe-
sis conditions for time-delay systems, see, e.g., Chen and Zheng
(2007), Fridman (2001), Han (2009), He,Wang, Lin, andWu (2005);
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He,Wang, Xie, and Lin (2007); He, Wu, She, and Liu (2004), Li, Jing,
and Karimi (2014), Qian, Liu, and Fei (2012) and Sun, Liu, and Chen
(2009).

In many practical control applications, actuator saturation is
often inevitable, and its existence may deteriorate the perfor-
mance of a control system and even cause the instability of closed-
loop system. Therefore, considerable attention has been devoted
to linear systems subject to saturating controllers during the past
decades, see e.g., Alamo, Cepeda, and Limon (2005), Gomes da
Silva and Tarbouriech (2005); Hu and Lin (2001), Hu, Lin, and Chen
(2002), Lin (1998), Tarbouriech, Garcia, Gomes da Silva, and Quein-
nec (2011), Zhou (2013) and Zhou, Lin, and Duan (2008). Gen-
erally speaking, the current research can be classified into two
categories according towhether the open-loop poles are located on
the closed left-half plane, i.e., global/semi-global stabilization, and
local stabilization and anti-windup design. For the local stabiliza-
tion and anti-windup design, two dominant approaches are pro-
posed to deal with the saturation nonlinearity, one is the polytopic
models (Alamo et al., 2005; Hu & Lin, 2001; Hu et al., 2002; Zhou,
2013) and the other is the generalized sector condition (Gomes da
Silva & Tarbouriech, 2005). In particular, it is worth mentioning
that the saturation representation proposed in Alamo et al. (2005)
and Tarbouriech et al. (2011) with the compact notation proposed
in Zhou (2013) contains more slack variables, and thus is less con-
servative than that in Hu and Lin (2001) and Hu et al. (2002) for the
multiple input systems.
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For the systems with both time-delay and actuator saturation,
global/semi-global stabilization were well investigated in Lin and
Fang (2007), Yakoubi and Chitour (2007), Zhou, Lin, and Duan
(2010) and Zhou, Lin, and Duan (2012) under the assumption
that the open-loop poles are located on the closed left-half plane.
Removing such a restriction on open-loop poles, the problem
of local stabilization has been widely studied in Cao, Lin, and
Hu (2002), Fridman, Pila, and Shaked (2003), Gomes da Silva,
Seuret, Fridman, and Richard (2005, 2011), Tarbouriech and
Gomes da Silva (2000) and Zhang, Boukas, and Haidar (2008)
by incorporating the techniques of analyzing the stability of
time-delay systems. However, it should be pointed out that the
techniques of representing saturation nonlinearity in the above
references are the same as the cases without delay. It is clear
that the time-delay information is completely neglected when
dealingwith the saturation nonlinearity, whichmay result in some
conservative results.

In this paper, we resist the stabilization problem for neutral
systemswith time-varying delay and actuator saturation. Different
from the existing techniques, the auxiliary time-delay feedback
is proposed in this paper. Based on the polytopic approach
proposed in Alamo et al. (2005), Tarbouriech et al. (2011) and
Zhou (2013), the saturation nonlinearly is firstly represented by
the convex combination of state feedback and auxiliary time-delay
feedback. By incorporating Lyapunov–Krasovskii (L–K) functional
theory, free-weighting matrix technique and integral inequalities,
and performing the accurate estimation of the lower bounds of
L–K functionals, then the improved stabilization conditions are
obtained in terms of LMIs. Compared with the existing results, the
main novelty of this paper is that the auxiliary time-delay feedback
is introduced for the first time when representing the saturation
nonlinearity, and the accurate estimation of the lower bounds
of L–K functionals is performed to obtain LMI-based conditions.
Finally, the reduced conservatism of the proposed conditions in
this paper is shown by numerical examples.

Notation. λM(P) denotes the maximum eigenvalue of matrix P . A
real symmetric matrix P > 0(≥ 0) denotes P being a positive def-
inite (positive semi-definite) matrix. I denotes an identity matrix
with proper dimension. Matrices, if not explicitly stated, are as-
sumed to have compatible dimensions. The space of the contin-
uously differentiable vector functions φ over [−h, 0] is denoted
by C1

[−h, 0]. ∥ · ∥ and ∥ · ∥∞ denote the 2-norm and ∞-norm,
respectively, and maxt∈[−h,0] ∥φ(t)∥ is denoted by ∥φ∥c . I[1, π]

denotes the set of integers whose elements are 1, 2, . . . , π . Dm de-
notes the set of m × m diagonal matrices with diagonal elements
either 1 or 0. em,k ∈ R1×m denotes a row vector whose k-th ele-
ment is 1 and the others are zero, and ⊗ denotes the Kronecker
product.

2. Problem formulation

Consider the following neutral time-delay systemwith actuator
saturation

ẋ(t) − Cẋ(t − h(t)) = Ax(t) + Adx(t − h(t)) + Bsat(u(t)), (1)
x(t) = φ(t), ∀t ∈ [−h, 0], (2)

where x(t) ∈ Rn is the state vector, u(t) ∈ Rm is the input
vector, A, Ad, B and C are known real constant matrices with ap-
propriate dimensions, h(t) denotes time-varying delay that sat-
isfies 0 ≤ h(t) ≤ h and ḣ(t) ≤ µ < 1. sat(u) : Rm

→

Rm is the vector valued standard saturation function described by
sat(u) = [sat(u1) sat(u2) · · · sat(um)]T , where sat(uj) = sgn(uj)
min{1, |uj|}, j ∈ I[1,m]. The controller used in this paper is the

following state feedback

u(t) = Kx(t), (3)

where K ∈ Rm×n is the gain matrix to be designed.
In this paper, it is assumed that φ(t) is continuously differen-

tiable over [−h, 0], and one of our interests is to estimate the do-
main of attraction of the following form

Xρ =

φ(t) ∈ C1

[−h, 0] : ∥φ∥c ≤ ρ1, ∥φ̇∥c ≤ ρ2

, (4)

where ρ1 and ρ2 are some scalars to be maximized.

Lemma 1 (Zhou (2013)). Let m ≥ 1 be a given integer, and v ∈ R
↔
m

be such that ∥v∥∞ ≤ 1, where
↔

m = m2m−1. Let the elements in
Dm be labeled as Di, i ∈ I[1, 2m

], and the function fm be defined as
fm(0) = 0 and

fm(i) =


fm(i − 1) + 1, Di + Dj ≠ Im, ∀j ∈ I[1, i]
fm(j), Di + Dj = Im, ∃j ∈ I[1, i].

Then for any u ∈ Rm, there holds

sat(u) ∈ co

Diu + D−

i v : i ∈ I[1, 2m
]

,

where ‘‘co’’ denotes the convex hull, and D−

i ∈ Rm×
↔
m is defined as

D−

i = e2m−1,fm(i) ⊗ D−

i with D−

i = I − Di.

Assume that there exist matrices U ∈ R
↔
m ×n, V ∈ R

↔
m ×n and

W ∈ R
↔
m ×n such that the restrictive condition ∥v(t)∥∞ = ∥Ux(t)+

Vx(t − h(t)) + Wx(t − h)∥∞ ≤ 1 holds for t ≥ 0, then it follows
from (1) and (3), and Lemma 1 that the closed-loop system can be
written as

ẋ(t) =

2m
i=1

λi(t)


A + B(DiK + D−

i U)

x(t)

+ (Ad + BD−

i V )x(t − h(t))

+ BD−

i Wx(t − h) + Cẋ(t − h(t))


, χ(t), (5)

where λ1(t) ≥ 0, . . . , λ2m(t) ≥ 0 and
2m

i=1 λi(t) = 1.

Remark 1. In Cao et al. (2002), Fridman et al. (2003) and Zhang
et al. (2008), the auxiliary feedback of the from v(t) = Hx(t) was
introduced under the assumption that |hlx(t)| ≤ ūl, l ∈ [1,m].
Different from the techniques in Cao et al. (2002), Fridman et al.
(2003) and Zhang et al. (2008), the auxiliary time-delay feedback
v(t) = Ux(t)+Vx(t−h(t))+Wx(t−h) is introduced in this paper.
Compared with some existing results, our proposed stabilization
conditions will be more slack due to the introduction of time-
delay feedback matrices V and W , and thus the larger estimates
of the domain of attraction can be obtained by the conditions in
this paper.

3. Main results

In this section,wewill establish the improved local stabilization
conditions in terms of LMIs.

Theorem 1. For given scalars h, µ < 1 and δ ≠ 0, if there

exist symmetric matrices P̄ > 0, Q̄1 =


Q̄11 Q̄12
Q̄ T
12 Q̄13


> 0, Q̄2 =

Q̄21 Q̄22
Q̄ T
22 Q̄23


> 0, Z̄ > 0, and any matrices X, Y ,G,H, L, M̄k, N̄k, k
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