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a b s t r a c t

This paper addresses the problem of minimizing the minimum eigenvalue of a trigonometric matrix
polynomial. The contribution is to show that, by exploiting Putinar’s Positivstellensatz and introducing
suitable transformations, it is possible to derive a nonconservative approach based on semidefinite pro-
gramming (SDP)whose computational burden can be significantly smaller than that of an existingmethod
recently published. Other advantages of the proposed approach include the possibility of taking into ac-
count the presence of constraints in the form of semi-algebraic sets and establishing tightness of a found
lower bound.
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1. Introduction

Frequency-domain methods have been playing a key role in
studying control systems sincemany years. Thesemethods exploit
the frequency response of the system, which is the evaluation of
the transfer function onto the imaginary axis (continuous-time
systems) or onto the complex unit circle (discrete-time systems),
see for instance Narendra and Taylor (1973) and Qiu and Zhou
(2010).

A problem arising in frequency-domain methods consists of
minimizing the minimum eigenvalue of a trigonometric matrix
polynomial. Indeed, this problem can be met in system modeling,
for instance when looking for an approximation of given systems,
and in system design, for instance when imposing bounds of the
frequency response of the system.

A possible way of addressing this problem in the case of a scalar
variable is through the Kalman–Yakubovich–Popov lemma, see for
instance Boyd, El Ghaoui, Feron, and Balakrishnan (1994). For the
case of multiple variable and scalar trigonometric polynomials, a
method based on sums of squares (SOS) of trigonometric polyno-
mials has been proposed in Megretski (2003). This method has
been extended to the case of trigonometric matrix polynomials
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in Henrion and Vyhlidal (2012) where its application to strong
stability analysis is described. See also Roh, Dumitrescu, and Van-
derberghe (2007) which proposes a simplifiedmethod for trigono-
metric polynomials in two variables and describes its application
to FIR filter design.

This paper addresses the problem of minimizing the minimum
eigenvalue of a trigonometric matrix polynomial. The contribution
is to show that, by exploiting Putinar’s Positivstellensatz and in-
troducing suitable transformations, it is possible to derive a non-
conservative approach based on semidefinite programming (SDP)
whose computational burden can be significantly smaller than that
of an existing method recently published. Other advantages of the
proposed approach include the possibility of taking into account
the presence of constraints in the form of semi-algebraic sets and
establishing tightness of a found lower bound. The proposed ap-
proach is illustrated by numerical examples which also include an
application in the estimation of reduced order models.

The paper is organized as follows. Section 2 introduces the
problem formulation and some preliminaries. Section 3 describes
the proposed results. Section 4 presents some illustrative exam-
ples. Lastly, Section 5 concludes the paperwith some final remarks.

2. Preliminaries

2.1. Problem formulation

Notation: N, Z, R, C: sets of natural (including zero), integer,
real, and complex numbers; j: imaginary unit; ℜ(A), ℑ(A): real
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and imaginary parts of A; Ā: complex conjugate of A; I: identity
matrix (of size specified by the context); AT , AH : transpose and
complex conjugate transpose of A; Hermitian matrix A: a matrix
satisfying A = AH ; ⋆: corresponding block in Hermitian matrices;
A > 0, A ≥ 0: positive definite and positive semidefinite matrix
A; λmin(A): minimum real eigenvalue of A; matrix polynomial: a
matrix whose entries are polynomials; det(A): determinant of A;
⊗: Kronecker product; ⌊a⌋: largest integer not greater than a; ⌈a⌉:
smallest integer not smaller than a; |a|: magnitude of a; mod(a, b);
modulo between a and b.

Let us denote the unit circle in C as

T = {z ∈ C : |z| = 1} . (1)

We say that F : T n
→ Cm×m is a trigonometric matrix polynomial

if

F(z) =


k∈S

Fkzk (2)

where S is a given finite subset of Zn, Fk ∈ Cm×m for k ∈ S are
given matrices, and the notation zk stands for

zk =

n
l=1

zkll . (3)

Moreover, we say that the trigonometric matrix polynomial F(z) is
Hermitian over T n if

F(z) = F(z)H ∀z ∈ T n. (4)

Problem. Let F : T n
→ Cm×m and gi : T n

→ C, i = 1, . . . , nG, be
Hermitian trigonometricmatrix polynomials overT n. The problem
is to solve

µ∗
= min

z∈G
λmin(F(z)) (5)

where G ⊆ T n is the semi-algebraic set

G =

z ∈ T n

: gi(z) ≥ 0 ∀i = 1, . . . , nG

. � (6)

2.2. SOS matrix polynomials

Herewe briefly define SOSmatrix polynomials and explain how
they can be investigated via LMIs. See also Chesi (2010), Chesi, Tesi,
Vicino, and Genesio (1999), Hol and Scherer (2004), Kojima (2003),
Lasserre (2001), Parrilo (2000), Prajna, Papachristodoulou, andWu
(2004), Scherer and Hol (2006) and references therein for details.
For reasons that will become clear in the next section, we consider
matrix polynomials in 2n variables of sizem × m.

Let us start by considering the real case. Let A : R2n
→ Rm×m be

amatrix polynomial.We say thatA(v), v ∈ R2n, is SOS if there exist
matrix polynomials Ai : R2n

→ Rm×m, i = 1, . . . , k, such that

A(v) =

k
i=1

Ai(v)TAi(v). (7)

A necessary and sufficient condition for establishing whether A(v)
is SOS can be obtained via an LMI feasibility test. Indeed, A(v) can
be expressed as

A(v) = (I ⊗ b(v))T (C + L(α)) (I ⊗ b(v)) (8)

where b(v) is a vector of monomials in v, C is a symmetric matrix,
and L(α) is a linear parametrization of the linear set

L =


L̃ = L̃T : (I ⊗ b(v))T L̃ (I ⊗ b(v)) = 0


(9)

with α free real vector. The representation (8) is known as square
matrix representation (SMR) and extends the Grammatrixmethod
for (scalar) polynomials to thematrix case. One has that A(v) is SOS

if and only if there exists α satisfying the LMI
C + L(α) ≥ 0. (10)

Next, let us consider the complex case. Let A : R2n
→ Cm×m be

a matrix polynomial. We say that A(v) is SOS if there exist matrix
polynomials Ai : R2n

→ Cm×m, i = 1, . . . , k, such that

A(v) =

k
i=1

Ai(v)HAi(v). (11)

Similarly to the real case, this condition holds if and only if there
exists α satisfying the LMI

ℜ(C + L(α)) ℑ(C + L(α))
⋆ ℜ(C + L(α))


≥ 0 (12)

where C and L(α) are Hermitian and satisfy (8), in particular L(α)
(with α free real vector) is a linear parametrization of the linear set
in (9) where L̃ is Hermitian instead of symmetric.

3. Main results

3.1. Proposed approach

Let us express F(z) as in (2), and define its degree as

deg(F) = max
k∈S
Fk≠0

n
l=1

|kl|. (13)

Assumption 1. For all i = 1, . . . , nG, deg(gi) is even. �

Let us observe that Assumption 1 can be introduced without
loss of generality. Indeed, if deg(gi) is odd for some i, one can rede-
fine such a gi(z) as
gi(z) → gi(z)ci(z) (14)
where ci(z) : T n

→ C is any trigonometric polynomial such that
deg(ci) = 1 and

∀z ∈ T n

ci(z) = ci(z)H

ci(z) > 0 (15)

which ensures that the newly defined trigonometric polynomial
has even degree and G is not modified.

Let us write z ∈ T n as
z = x + jy (16)
where x, y ∈ Rn, and define v ∈ R2n as

v = (xT , yT )T . (17)
Let us express F(z) as in (2), and introduce the matrix polynomial

∆(F , v) =


k∈S

Fk
n

σ=1

δ(v, k, σ ) (18)

where

δ(v, k, σ ) =


(vσ + jvσ+n)

kσ if kσ ≥ 0
(vσ − jvσ+n)

kσ otherwise.
(19)

Let us define the set

D =


R if ∆(F , v), ∆(g1, v), . . . , ∆(gnG , v) are real
C otherwise. (20)

Let A : R2n
→ Dm×m be a matrix polynomial expressed as

A(v) =


k∈N2n

Akv
k (21)

for some Ak ∈ Dm×m, and introduce

Θ(A, v) =


k∈N2n

Ak

2n
σ=1

θ(v, k, σ ) (22)
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