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a b s t r a c t 

This paper proposes a new method based on accelerated alternating minimization (AAM) for analysis 

sparse recovery. This method is extremely attractive as (1) it is very simple and computationally efficient, 

(2) it exhibits a fast convergence rate, (3) it is flexible and amenable to many kinds of reconstruction 

problems. We establish the connection between the classical alternating minimization (AM) method and 

the well-known proximal gradient (PG) method. Thus combining the accelerated proximal gradient (APG) 

method with the Moreau proximal smoothing technique, a new smoothing-based AAM (SAAM) method, 

which can obtain an ε-optimal solution within O (1/ ε) iterations, is designed. Numerical experiments on 

randomly generated data and real image reconstruction show that this method compares favorably with 

several state-of-the-art methods. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Compressed sensing [14] is a very active field of recent re- 

search which covers a wide range of applications, including signal 

processing, medical imaging, seismology, and statistics. It predicts 

that sparse signals can be reconstructed from incomplete measure- 

ments using efficient reconstruction methods. Formally, in com- 

pressed sensing, one considers the following linear form: 

b = Ax + e, (1) 

where A ∈ R 

m ×n is a known measurement matrix, b ∈ R 

m is the ob- 

servation vector, and e ∈ R 

m represents the noise term. The goal is 

to reconstruct the unknown signal x based on A and b . 

Recently, the analysis sparsity model (or cosparsity model) 

[13,17,20,24] has attracted significant interest as well, where it is 

assumed that the signal x possesses a structure with respect to 

the given matrix D ∈ R 

p×n in the sense that the application of D 

to x produces a sparse vector, i.e., Dx is sparse. We refer to D as 

a analysis operator. If the � 2 norm of the noise e is bounded by 
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ε, then the recovery problem can be formulated as the following 

constrained analysis based approach, referred to as analysis basis 

pursuit (ABP): 

min 

x ∈ R n 
‖ Dx ‖ 1 subject to ‖ Ax − b‖ 2 ≤ ε. (2) 

Alternatively, the following unconstrained analysis based approach 

is more widely studied in many applications: 

min 

x ∈ R n 
‖ Dx ‖ 1 + 

μ

2 

‖ Ax − b‖ 

2 
2 , (3) 

which is called analysis LASSO (ALASSO). Here μ> 0 denotes the 

regularization parameter, and ‖ · ‖ 1 and ‖ · ‖ 2 stand for the � 1 and 

� 2 norm, respectively. In fact, ABP is equivalent to ALASSO in the 

sense that for any ε > 0 there exists a μ for which the optimal so- 

lutions of ABP and ALASSO are identical. In addition to the above 

� 1 -convex relaxation methods, there are some other alternative ap- 

proaches including greedy-type algorithms such as Greedy Anal- 

ysis Pursuit (GAP) [20,24] , thresholding-based methods [15,27] or 

reweighted � 1 -minimization [10] . In this paper, we focus on the 

ALASSO formulation (3) . 

In the last few years, several efficient algorithms have been pro- 

posed and studied for solving the optimization problems ABP and 

ALASSO [7,18,21,22,33] . The algorithm YALL1 developed by Yang 
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and Zhang [33] , which is an alternating direction algorithm, is able 

to solve the constrained problem (2) and the unconstrained formu- 

lation (3) . In [7] , based on a smoothing technique studied by Nes- 

terov in [25] , a first-order algorithm called NESTA was proposed. 

However, such two algorithms require the measurement matrix A 

to have a nice structure. YALL1 could be prone to a slow conver- 

gence if the rows (or columns) of A are neither orthonormalized 

nor normalized and NESTA requires the matrix A 

T A to be an or- 

thogonal projector. Recently, two fast algorithms called SFISTA and 

DFISTA were proposed in [31] by Tan et al. where the authors 

used the smoothing and decomposition transformations to relax 

the original sparse recovery problem (3) and then a monotone ver- 

sion of the fast iterative shrinkage-thresholding algorithm (MFISTA) 

[4] is implemented on the relaxed formulation. Experimental re- 

sults provided in [31] show SFISTA converges faster than DFISTA. 

Although SFISTA can avoid imposing conditions on the measure- 

ment A , it is very slow as will be shown later in the numerical 

results section. 

Alternating minimization (AM) method, which is a rather old 

and fundamental algorithm, is attractive due to its simplicity and 

efficiency. However, it has also been recognized as a slow method. 

Very recently, Beck [3, Theorem 5.4] studied the convergence prop- 

erties of the AM method with decomposition-based approach de- 

signed to solve a composite convex model, and shown that O (1/ ε2 ) 

iterations are needed to obtain an ε-optimal solution. 

In this paper, we aim to design a faster method than the classi- 

cal AM method for analysis sparse recovery, in the sense that the 

computational effort of the new method will keep the simplicity 

of AM, while its convergence rate will be significantly better. The 

main contributions of the work are as follows. 

• The Moreau proximal smoothing technique is adopted to trans- 

form the nondifferentiable and nonseparable term ‖ Dx ‖ 1 in 

(3) into a smooth counterpart, and then we establish the equiv- 

alence between the classical AM method and the well-known 

proximal gradient (PG) method. 
• Based on the techniques and results of the accelerated prox- 

imal gradient (APG) method, a new smoothing-based acceler- 

ated alternating minimization (SAAM) that keeps the simplicity 

and efficiently of AM but shares the fast convergence rate is 

constructed for solving the analysis sparse recovery problem. In 

addition, we also show that the proposed SAAM method can 

obtain an ε-optimal solution within O (1/ ε) iterations, which, of 

course, improves the convergence rate established in [3] . 
• To verify the efficiency of the proposed method, we compare 

SAAM with several state-of-the-art solvers on randomly gener- 

ated data, such as YALL1 [33] , NESTA [7] and SFISTA [31] , which 

had been shown to be favorable among other algorithms in- 

cluding the interior point method (e.g., � 1 − � s ) [18] , the non- 

linear conjugate gradient descend (CGD) [22] algorithm, the 

generalized iterative soft-thresholding (GIST) [21] algorithm, 

etc. Furthermore, we also show that our results are flexible 

and useful for many types of reconstruction problems such as 

the TV-based image restoration problem [12,19,28,32] . Numeri- 

cal experiments indicate that SAAM is more efficient than sev- 

eral state-of-the-art TV solvers for image restoration, such as 

FTVd [32] and ADMM-based methods [1,2,12,19] . 

The remaining parts of this paper are organized as follows. In 

Section 2 , we give a quick review of the proximal map and the PG 

method. In Section 3 , we propose the SAAM method. In Section 4 , 

we will establish the convergence properties of the algorithm. In 

Section 5 , we provide the numerical results. Finally, we conclude 

this paper in Section 6 . 

2. Proximal map and proximal gradient method 

2.1. Proximal map 

In this subsection, we will recall the definition and some fun- 

damental properties of Moreau’s proximal map, which is essential 

for us to establish the smoothing-based algorithm for the analysis 

sparse recovery problem (3) . 

Given a proper closed convex function g : R 

p → (−∞ , + ∞ ] and 

any t > 0, the proximal map associated to g is defined by 

prox tg (x ) := arg min 

u 

{ 

g(u ) + 

1 

2 t 
‖ u − x ‖ 

2 
2 

} 

, (4) 

and define 

g t (x ) := inf 
u 

{ 

g(u ) + 

1 

2 t 
‖ u − x ‖ 

2 
2 

} 

. (5) 

The function g t is called the Moreau envelope of g and enjoys sev- 

eral important properties. The next proposition records three such 

important properties, for a proof see [25, Theorem 1] , [6, Theo- 

rem 4.1] , [30, Proposition 2.2] . 

Proposition 1. Let g : R 

p → (−∞ , + ∞ ] be a closed proper convex 

function and let D ∈ R 

p×n be a given matrix. For any y ∈ R 

n and t > 0, 

the following results hold: 

(1) The function g t ( Dy ) is continuously differentiable with the gra- 

dient given by 

∇g t (Dy ) = 

1 

t 
D 

T (Dy − prox tg (Dy )) . 

(2) Let D 

T denote the transpose of D, then for every y, y ′ ∈ R 

n , 

g t (Dy ′ ) ≤ g t (Dy ) + 〈∇g t (Dy ) , y ′ − y 〉 + 

1 

2 t 
〈 y ′ − y, D 

T D (y ′ − y ) 〉 . 
(3) Suppose the subgradients of g over R 

p are bounded by L g , 

then 

g(Dy ) − t 

2 

L 2 g ≤ g t (Dy ) ≤ g(Dy ) . 

2.2. Proximal gradient method 

For the purpose of our analysis, we consider the following gen- 

eral convex optimization model: 

min 

u ∈ R p 
{
�(u ) := φ(u ) + ϕ(u ) 

}
. (6) 

Here, φ : R 

p → (−∞ , + ∞ ] is an extended-valued, proper, closed 

and convex function (possible nonsmooth); ϕ : R 

p → R is convex 

and continuously differentiable with Lipschitz continuous gradi- 

ent. Given any symmetric positive semidefinite matrix H , define 

ω(·, ·) : R 

p × R 

p → R by 

ω H (u, w ) := ϕ(w ) + 〈∇ϕ(w ) , u − w 〉 + 

1 

2 

〈 u − w, H(u − w ) 〉 . 
Then for any u, w ∈ R 

p , there exists a symmetric positive semidef- 

inite matrix H such that 

ϕ(u ) ≤ ω H (u, w ) . (7) 

For any u 0 ∈ R 

p , the k th iteration of proximal gradient (PG) for 

solving (6) takes the following form (see [5] ): 

u 

k +1 := arg min 

u ∈ R p 
{
φ(u ) + ω H (u, u 

k ) 
}
, (8) 

where H is a symmetric positive definite matrix such that 

(7) holds. The main disadvantage of the PG method is that it suf- 

fers from a relatively slow O (1/ k ) rate of convergence of the func- 

tion values, i.e., �(u k ) − �∗ � O (1 /k ) . Here, �∗ stands for the op- 

timal value for the problem (6) . An accelerated version is the ac- 

celerated proximal gradient (APG) method [5,16] , which shares the 



Download English Version:

https://daneshyari.com/en/article/6957861

Download Persian Version:

https://daneshyari.com/article/6957861

Daneshyari.com

https://daneshyari.com/en/article/6957861
https://daneshyari.com/article/6957861
https://daneshyari.com

