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a b s t r a c t 

The analysis in Part I [1] revealed interesting properties for subgradient learning algorithms in the context 

of stochastic optimization. These algorithms are used when the risk functions are non-smooth or involve 

non-differentiable components. They have been long recognized as being slow converging methods. How- 

ever, it was revealed in Part I [1] that the rate of convergence becomes linear for stochastic optimization 

problems, with the error iterate converging at an exponential rate αi to within an O (μ) −neighborhood 

of the optimizer, for some α ∈ (0, 1) and small step-size μ. The conclusion was established under weaker 

assumptions than the prior literature and, moreover, several important problems were shown to satisfy 

these weaker assumptions automatically. These results revealed that sub-gradient learning methods have 

more favorable behavior than originally thought. The results of Part I [1] were exclusive to single-agent 

adaptation. The purpose of current Part II is to examine the implications of these discoveries when a col- 

lection of networked agents employs subgradient learning as their cooperative mechanism. The analysis 

will show that, despite the coupled dynamics that arises in a networked scenario, the agents are still able 

to attain linear convergence in the stochastic case; they are also able to reach agreement within O ( μ) of 

the optimizer. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction and review of [1] 

We review briefly the notation and findings from Part I [1] in 

preparation for examining the challenges that arise in the multi- 

agent scenario. In Part I [1] , we considered an optimization prob- 

lem of the form: 

w 

� = arg min 

w ∈ R M 
J(w ) (1) 

where the possibly non-differentiable but strongly-convex risk func- 

tion J ( w ) was expressed as the expectation of some convex but also 

possibly non-differentiable loss function Q ( · ), namely, 

J(w ) 
�= E Q(w ; x ) (2) 

Here, the letter x represents the random data and the expectation 

operation is over the distribution of this data. The following sub- 

gradient algorithm was introduced and studied in Part I [1] for 

seeking w 

� : 

w i = w i −1 − μ̂ g ( w i −1 ) (3) 
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S i = κS i −1 + 1 (4) 

w̄ i = 

(
1 − 1 

S i 

)
w̄ i −1 + 

1 

S i 
w i (5) 

with initial conditions S 0 = 1 , w 0 = 0 , and w̄ 0 = 0 . Boldface nota- 

tion is used for w i to highlight its stochastic nature since the suc- 

cessive iterates are generated by relying on streaming data real- 

izations for x . Moreover, the scalar κ ∈ [ α, 1), where α = 1 − O (μ) 

is a number close to one. The term 

̂ g ( w i −1 ) in [3] is an approxi- 

mate sub-gradient at location w i −1 ; it is computed from the data 

available at time i and approximates a true sub-gradient denoted 

by g( w i −1 ) . This true sub-gradient is unavailable since J ( w ) itself 

is unavailable in the stochastic context. This is because the distri- 

bution of the data x is unknown beforehand, which means that 

the expected loss function cannot be evaluated. The difference be- 

tween a true sub-gradient vector and its approximation is gradient 

noise and is denoted by 

s i ( w i −1 ) 
�= 

̂ g ( w i −1 ) − g( w i −1 ) (6) 
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1.1. Datamodel and assumptions 

The following three assumptions were motivated in Part I [1] : 

1. J ( w ) is η−strongly-convex so that w 

� is unique. The strong con- 

vexity of J ( w ) means that 

J(θw 1 + (1 − θ ) w 2 ) ≤ θ J(w 1 ) + (1 − θ ) J(w 2 ) 

− η

2 

θ (1 − θ ) ‖ w 1 − w 2 ‖ 

2 , (7) 

for any θ ∈ [0, 1], w 1 , and w 2 . The above condition is equivalent 

to requiring [3] : 

J(w 1 ) ≥ J(w 2 ) + g(w 2 ) 
T (w 1 − w 2 ) + 

η

2 

‖ w 1 − w 2 ‖ 

2 . (8) 

2. The subgradient is affine Lipschitz, meaning that there exist 

constants c ≥ 0 and d ≥ 0 such that 

‖ g(w 1 ) − g ′ (w 2 ) ‖ ≤ c‖ w 1 − w 2 ‖ + d, ∀ w 1 , w 2 (9) 

and for any g ′ ( · ) ∈ ∂ J ( · ). Here, the notation ∂ J ( w ) denotes the 

differential at location w (i.e., the set of all possible subgradient 

vectors at w ). It was explained in Part I [1] how this affine Lip- 

schitz condition is weaker than conditions used before in the 

literature and how important cases of interest (such as SVM, 

LASSO, Total Variation) satisfy it automatically (but do not sat- 

isfy the previous conditions). For later use, it is easy to verify 

(as was done in (50) in Part I [1] ) that condition (9) implies 

that 

‖ g(w 1 ) − g ′ (w 2 ) ‖ 

2 ≤ e 2 ‖ w 1 − w 2 ‖ 

2 + f 2 , ∀ w 1 , w 2 , (10) 

for any g ′ ( · ) ∈ ∂ J ( · ) and some constants e 2 ≥ 0 and f 2 ≥ 0. 

3. The first and second-order moments of the gradient noise pro- 

cess satisfy the conditions: 

E [ s i ( w i −1 ) | F i −1 ] = 0 , (11) 

E [ ‖ s i ( w i −1 ) ‖ 

2 | F i −1 ] ≤β2 ‖ w 

� − w i −1 ‖ 

2 + σ 2 , (12) 

for some constants β2 ≥ 0 and σ 2 ≥ 0, and where the notation 

F i −1 denotes the filtration (collection) corresponding to all past 

iterates: 

F i −1 = filtration by { w j , j ≤ i − 1 } . (13) 

It was again shown in Part I [1] how the gradient noise pro- 

cess in important applications (e.g., SVM,LASSO) satisfy (11) and 

(12) directly. 

Under the three conditions (1)–(3), which are automatically sat- 

isfied for important cases of interest, the following important con- 

clusion was proven in Part I [1] for the stochastic subgradient al- 

gorithm (3) –(5) above. At every iteration i , the average risk value 

converges to a small O (μ) −neighborhood around J ( w 

� ), namely, 

lim 

i →∞ 

E J( ̄w i ) − J(w 

� ) ≤ μ( f 2 + σ 2 ) / 2 (14) 

where the convergence of E J( ̄w i ) towards this neighborhood oc- 

curs at an exponential rate O ( αi ) where α = 1 − μη + O (μ2 ) . 

1.2. Interpretation of result 

For the benefit of the reader, we repeat here the interpreta- 

tion that was given in Sec. IV.D of Part I [1] for the key results 

(14) ; these remarks will be relevant in the networked case and are 

therefore useful to highlight again: 

1. First, it has been observed in the optimization literature [3–

5] that sub-gradient descent iterations can perform poorly in 

deterministic problems (where J ( w ) is known). Their conver- 

gence rate is O (1 / 
√ 

i ) under convexity and O (1/ i ) under strong- 

convexity when decaying step-sizes, μ(i ) = 1 /i, are used to en- 

sure convergence [5] . Result (14) shows that the situation is dif- 

ferent in the context of stochastic optimization when true sub- 

gradients are approximated from streaming data due to differ- 

ent requirements. By using constant step-sizes to enable contin- 

uous learning and adaptation, the sub-gradient iteration is now 

able to achieve exponential convergence at the rate of O ( αi ) to 

steady-state. 

2. Second, this substantial improvement in convergence rate 

comes at a cost, but one that is acceptable and controllable. 

Specifically, we cannot guarantee convergence of the algorithm 

to the global minimum value, J ( w 

� ), anymore but can instead 

approach this optimal value with high accuracy in the order of 

O ( μ), where the size of μ is under the designer’s control and 

can be selected as small as desired. 

3. Third, this performance level is sufficient in most cases of in- 

terest because, in practice, one rarely has an infinite amount of 

data and, moreover, the data is often subject to distortions not 

captured by any assumed models. It is increasingly recognized 

in the literature that it is not always necessary to ensure exact 

convergence towards the optimal solution, w 

� , or the minimum 

value, J ( w 

� ), because these optimal values may not reflect accu- 

rately the true state due to modeling errors. For example, it is 

explained in the works [3,6–8] that it is generally unnecessary 

to reduce the error measures below the statistical error level 

that is present in the data. 

1.3. This work 

The purpose of this work is to examine how these proper- 

ties reveal themselves in the networked case when a multitude 

of interconnected agents cooperate to minimize an aggregate cost 

function that is not generally smooth. In this case, it is neces- 

sary to examine closely the effect of the coupled dynamics and 

whether agents will still be able to agree fast enough under non- 

differentiability. 

Distributed learning under non-smooth risk functions is com- 

mon in many applications including distributed estimation and 

distributed machine learning. For example, � 1 -regularization or 

hinge-loss functions (as in SVM implementations) lead to non- 

smooth risks. Several useful techniques have been developed in the 

literature for the solution of such distributed optimization prob- 

lems, including the use of consensus strategies [9–11] and diffusion 

strategies [12–15] . In this paper, we will focus on the Adapt-then- 

Combine (ATC) diffusion strategy mainly because diffusion strate- 

gies have been shown to have superior mean-square-error and sta- 

bility performance in adaptive scenarios where agents are expected 

to continually learn from streaming data [15] . In particular, we 

shall examine the performance and stability behavior of networked 

diffusion learning under weaker conditions than previously con- 

sidered in the literature. It is true that there have been several 

useful studies that employed sub-gradient constructions in the dis- 

tributed setting before, most notably [9,16,17] . However, these ear- 

lier works generally assume bounded subgradients. As was already 

explained in Part I [1] , this is a serious limitation (which does not 

hold even for quadratic risks where the gradient vector is linear in 

w and grows unbounded). Instead, we shall consider the weaker 

affine Lipschitz condition (9) , which was shown in Part I [1] to be 

satisfied automatically by important risk functions such as those 

arising in popular quadratic, SVM, and LASSO formulations. 

Notation : We use lowercase letters to denote vectors, uppercase 

letters for matrices, plain letters for deterministic variables, and 

boldface letters for random variables. We also use (·) T to denote 

transposition, (·) −1 for matrix inversion, Tr (·) for the trace of a 
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