
Automatica 52 (2015) 309–316

Contents lists available at ScienceDirect

Automatica

journal homepage: www.elsevier.com/locate/automatica

Brief paper

A region-dependent gain condition for asymptotic stability✩

Humberto Stein Shiromoto a, Vincent Andrieu c,d, Christophe Prieur b
a INCAS3 Dr. Nassaulaan 9, 9401 HJ Assen, The Netherlands
b GIPSA-lab, Grenoble Campus, 11 rue des Mathématiques, BP 46, 38402 Saint Martin d’Hères Cedex, France
c LAGEP, Université de Lyon, Rue Victor Grignard, CPE, Bât. G, 69622 Villeurbanne, France
d Fachbereich C - Mathematik und Naturwissenschaften, Bergische Universität Wuppertal, Gaußstraße 20, 42097 Wuppertal, Germany

a r t i c l e i n f o

Article history:
Received 29 July 2013
Received in revised form
31 October 2014
Accepted 17 November 2014
Available online 8 January 2015

Keywords:
Asymptotic stabilization
Application of nonlinear analysis and
design

Interconnected systems
Nonlinear Systems
Control system analysis

a b s t r a c t

A sufficient condition for the stability of a system resulting from the interconnection of dynamical systems
is given by the small gain theorem. Roughly speaking, to apply this theorem, it is required that the
gains composition is continuous, increasing and upper bounded by the identity function. In this work, an
alternative sufficient condition is presented for the case in which this criterion fails due to either lack of
continuity or the bound of the composed gain is larger than the identity function.More precisely, the local
(resp. non-local) asymptotic stability of the origin (resp. global attractivity of a compact set) is ensured
by a region-dependent small gain condition. Under an additional condition that implies convergence of
solutions for almost all initial conditions in a suitable domain, the almost global asymptotic stability of
the origin is ensured. Two examples illustrate and motivate this approach.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

The use of nonlinear input–output gains for stability analysis
was introduced in Zames (1966) by considering a system as an in-
put–output operator. The condition that ensures stability, called
Small Gain Theorem, of interconnected systems is based on the
contraction principle.

Thework (Sontag, 1989) introduces a new concept of gain relat-
ing the input to system states. This notion of stability links Zames’
and Lyapunov’s approaches (Sontag, 2001). Characterizations in
terms of dissipation and Lyapunov functions are given in Sontag
and Wang (1995).

In Jiang, Teel, and Praly (1994), the contraction principle is used
in the input-to-state stability notion to obtain an equivalent Small
Gain Theorem. A formulation of this criterion in terms of Lyapunov
functions may be found in Jiang and Mareels (1996).
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Besides stability analysis, the Small Gain Theorem may also be
used for the design of dynamic feedback laws satisfying robust-
ness constraints. The interested reader is invited to see Freeman
and Kokotović (2008), Sastry (1999) and references therein. Other
versions of the Small Gain theorem do exist in the literature, see
Angeli and Astolfi (2007), Astolfi and Praly (2012), Ito (2006) and
Ito and Jiang (2009) for not necessarily ISS systems.

In order to apply the Small Gain Theorem, it is required that the
composition of the nonlinear gains is smaller than the argument
for all of its positive values. Such a condition, called Small Gain
Condition, restricts the application of the Small Gain Theorem to
a composition of well chosen gains.

In this work, an alternative criterion for the stabilization of in-
terconnected systems is provided when a single Small Gain Condi-
tion does not hold globally. It consists in showing that if the two
conditions hold: (1) a local (resp. non-local) Small Gain Condition
holds in a local (resp. non-local) region of the state space, and the
intersection of the local and non-local is empty, and (2) outside
the union of these regions, the set of initial conditions from which
the associated trajectories do not converge to the local region has
measure zero, then the resulting interconnected system is almost
asymptotically stable (this notion is precisely defined below). In
this paper, a sufficient condition guaranteeing this property to hold
is presented.Moreover, for planar systems, an extension of Bendix-
son’s criterion to regions which are not simply connected is given.
This allows to obtain global asymptotic stability of the origin.
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This approach may be seen as a unification of two small gain
conditions that hold in different regions: a local and a non-local.
The use of a unifying approach for local and non-local properties is
well known in the literature see Andrieu and Prieur (2010) in the
context of control Lyapunov functions, see Chaillet, Angeli, and Ito
(2012) when uniting iISS and ISS properties.

This paper is organized as follows. In Section 2, the system
under consideration and the problem statement are presented.
Section 3 states the assumptions to solve the problem under con-
sideration and the main results. Section 4 presents examples that
illustrate the assumptions andmain results. In Section 5 the proofs
of the main results are presented. Section 6 collects some conclud-
ing remarks.
Notation. Let k ∈ Z>0. Let S be a subset of Rk containing the origin,
the notation S≠0 stands for S \ {0}. The closure of S is denoted
by cl{S}. Let x ∈ Rk, the notation |x| stands for Euclidean norm
of x. An open (resp. closed) ball centered at x ∈ Rk with radius
r > 0 is denoted by B<r(x) (resp. B≤r(x)). A continuous function
f : Rk

→ R is positive definite if, for every x ∈ Rk
\{0}, f (x) > 0 and

f (0) = 0. It is proper if |f (x)| → ∞, as |x| → ∞. ByL∞

loc(R, Rk) the
class of functions η : R → Rk that are locally essentially bounded.
By Cs it is denoted the class of s-times continuously differentiable
functions, by P it is denoted the class of positive definite functions,
by K it is denoted the class of continuous, positive definite and
strictly increasing functions γ : R≥0 → R≥0; it is denoted by K∞ if,
in addition, they are unbounded. Let c ∈ R>0, the notation Ω�c(f )
stands for the subset of Rk defined by {x ∈ Rk

: f (x) � c}, where
� is a comparison operator (i.e., =, <, ≥ etc). The support of the
function f is the set supp := {x ∈ Rk

: f (x) ≠ 0}. By L∞

loc(R≥0, Rk)

it is denoted the class of functions g : R≥0 → Rk that are locally
essentially bounded. Let x, x̄ ∈ R≥0, the notation x ↗ x̄ (resp.
x ↘ x̄) stands for x → x̄with x < x̄ (resp. x > x̄).

2. Background and problem statement

Consider the system
ẋ(t) = f (x(t), u(t)), (1)
where, for every t ∈ R≥0, x(t) ∈ Rn, and u ∈ L∞

loc(R≥0, Rm), for
some positive integers n andm. Also, f ∈ C1(Rn+m, Rn). A solution
of (1) with initial condition x, and input u at time t is denoted by
X(t, x, u). From now on, arguments t will be omitted, and assume
that the origin is input-to-stable stable (ISS for short) for (1). For
further details on this concept, the interested reader is invited to
consult Sontag (2001) or Sontag and Wang (1996).

A locally Lipschitz function V : Rn
→ R≥0 for which there exist

αx, αx ∈ K∞ such that, for every x ∈ Rn, αx(|x|) ≤ V (x) ≤ αx(|x|)
is called storage function.

Inspired byDashkovskiy, Ruffer, andWirth (2010) and Liberzon,
Nešić, and Teel (2014), the following notion of derivative will be
used.

Definition 1. Consider the function ξ : [a, b) → R, the limit at
t ∈ [a, b)

D+ξ(t) = lim sup
τ↘0

ξ(t+τ)−ξ(t)
τ

(if it exists) is called Dini derivative. Let k1 and k2 be positive
integers, (y1, y2) ∈ Rk1 × Rk2 , functions ϕ : Rk1+k2 → R,
h1 : Rk1 → Rk1 and h2 : Rk2 → Rk2 . The limit

D+

h1,h2
ϕ(y1, y2) = lim sup

τ↘0

ϕ(y1+τh1(y1),y2+τh2(y2))−ϕ(y1,y2)
τ

(if it exists) is called Dini derivative of ϕ in the h1 and h2-directions
at (y1, y2).1 ▹

1 When the Dini derivative is taken in only one direction, the subscript denotes
only such a direction.

If, for a given storage function V , there exist a proper function
λx ∈ (C0

∩ P )(Rn, R≥0), and αx ∈ K∞ called ISS-Lyapunov gain
such that, for every (x, u) ∈ Rn

× Rm,

|x| ≥ αx(|u|) ⇒ D+

f V (x, u) ≤ −λx(x), (2)
then V is called ISS-Lyapunov function for (1). As in Dashkovskiy
et al. (2010), the proof that the existence of an ISS-Lyapunov
implies that (1) is ISS goes along the lines presented in Sontag and
Wang (1995).

Consider the system2

ż = g(v, z), (3)
where v ∈ L∞

loc(R≥0, Rn), z ∈ Rm, and g ∈ C1(Rn+m, Rm). From
now on, assume that W : Rn+m

→ R≥0 is an ISS-Lyapunov func-
tion for (3) with λz ∈ (C0

∩P )(Rm, R≥0), and αz ∈ K∞ satisfying,
for every (v, z) ∈ Rn+m,

W (z) ≥ αz(|v|) ⇒ D+

g W (v, z) ≤ −λz(z). (4)

System under consideration. Interconnecting systems (1) and (3)
yields the system
ẋ = f (x, z),
ż = g(x, z). (5)

Using the vectorial notation y = (x, z), system (5) is denoted by
ẏ = h(y). A solution initiated from y in Rn+m and evaluated at time
t is denoted Y (t, y). The two ISS-Lyapunov inequalities (2) and (4)
can be rephrased as follows. For every couple (x, z) ∈ Rn+m,

V (x) ≥ γ (W (z)) ⇒ D+

f V (x, z) ≤ −λx(x),
W (z) ≥ δ(V (x)) ⇒ D+

g W (x, z) ≤ −λz(z)
(6)

with suitable functions γ , δ ∈ K∞.
A sufficient condition that ensures the stability of (5) is given by

the small gain theorem (Jiang & Mareels, 1996). Roughly speaking
if,
∀s ∈ R>0, γ ◦ δ(s) < s, (7)
then the origin is globally asymptotically stable for (5).
Problem statement. At this point, it is possible to explain the
problem under consideration. ISS systems for which (7) does not
hold in a bounded set of R≥0 are considered. This paper shows that
by merging small gain arguments in different regions of the state
space and employing some tools frommeasure theory, a sufficient
condition ensuring almost global asymptotic stability of the origin
is possible to be given. For planar interconnected systems, by using
an extension of Bendixon’s criterion, global asymptotic stability of
the origin may be established.

3. Assumptions and main results

Assumption 1. There exist constant values 0 ≤ M < M ≤ ∞ and
0 ≤ N < N ≤ ∞, and class K∞ functions γ and δ such that, for
every (x, z) ∈ S ⊂ Rn

× Rm, the implications

V (x) ≥ γ (W (z)) ⇒ D+

f V (x, z) ≤ −λx(x) (8)

W (z) ≥ δ(V (x)) ⇒ D+

g W (x, z) ≤ −λz(z) (9)

hold, where

S := {(x, z) ∈ Rn
× Rm

: M ≤ V (x) ≤ M,

W (z) ≤ N} ∪ {(x, z) ∈ Rn
× Rm

:

V (x) ≤ M,N ≤ W (z) ≤ N}, ▹ (10)

2 A solution of (3) with initial condition z, and input v at time t is denoted by
Z(t, z, v).
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