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a b s t r a c t 

One-bit measurements widely exist in the real world and can be used to recover sparse signals. This task 

is known as one-bit compressive sensing (1bit-CS). In this paper, we propose novel algorithms based on 

both convex and non-convex sparsity-inducing penalties for robust 1bit-CS. We consider the dual prob- 

lem, which has only one variable and provides a sufficient condition to verify whether a solution is glob- 

ally optimal or not. For positive homogeneous penalties, a globally optimal solution can be obtained in 

two steps: a proximal operator and a normalization step. For other penalties, we solve the dual problem, 

and it needs to evaluate the proximal operators for many times. Then we provide fast algorithms for 

finding analytical solutions for three penalties: minimax concave penalty (MCP), � 0 norm, and sorted � 1 
penalty. Specifically, our algorithm is more than 200 times faster than the existing algorithm for MCP. Its 

efficiency is comparable to the algorithm for the � 1 penalty in time, while its performance is much better 

than � 1 . Among these penalties, sorted � 1 is most robust to noise in different settings. 

Published by Elsevier B.V. 

1. Introduction 

Analog-to-digital converting (ADC) is a necessary process in 

digital processing, and the choice of the bit-depth is an important 

issue. The extreme case is to use one-bit measurements, which en- 

joy many advantages, e.g., they can be implemented by one low 

power comparator running at a high rate. Mathematically, one- 

bit compressive sensing (1bit-CS) is to recover a K -sparse vector 

x ∈ R 

n ( ‖ x ‖ 0 ≤ K ) from m one-bit quantized measurements 

y i = sgn (u 

� 
i x + ε i ) , (1) 

where u i ∈ R 

n is the i th sensing vector, εi is the noise in the mea- 

surement, and the function sgn returns 1 for a positive number 

and −1 otherwise. The sensing system and measurements are rep- 

resented by U = [ u 1 , u 2 , . . . , u m 

] and y = [ y 1 , y 2 , . . . , y m 

] � , respec- 

tively. Due to the low power and high sampling rate, one-bit mea- 

surements have been applied in the estimation of frequency, phase, 

and direction of arrival (DOA) [1–3] . For example, in the DOA es- 

timation, a radar with one-bit measurements has a higher scan 

speed than others. One-bit measurements are also attractive in dis- 
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tributed networks [4,5] , where the use of one-bit measurements 

largely reduces the communication load. 

If the underlying signal is sparse, then sparsity pursuit tech- 

niques can help signal recovery, which is similar to the regular 

compressive sensing. Therefore, since its proposal by Boufounos 

and Baraniuk [6] , 1bit-CS has attracted much attention in both the 

signal processing society [7–10] and the machine learning society 

[11–14] . Because the one-bit information has no capability to spec- 

ify the magnitude of the original signal, we assume ‖ x ‖ 2 = 1 with- 

out loss of generality (there is also some work on norm estimation, 

see, e.g., [15] ), and 1bit-CS can be explained as finding the sparest 

vector on the unit sphere that coincides with the observed signs, 

i.e, 

minimize 
x ∈ R n 

‖ x ‖ 0 , 

subject to y i = sgn (u 

� 
i 

x ) , ∀ i = 1 , 2 , . . . , m, 

‖ x ‖ 2 = 1 . 

(2) 

This is an NP-hard problem, and several algorithms are developed 

to approximately solve it or its variants [6,7,16,17] . The constraint 

in (2) does not tolerate noise or sign flips, and it may exclude the 

real signal from the feasible set. Additionally, the feasible set may 

be empty, and there is no solution for (2) . One way to deal with 

noise and sign flips is to replace the constraint y i = sgn (u 

� 
i 

x ) by a 

loss function. For example, the one-sided � 1 loss and the one-sided 
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Fig. 1. Recovery performance for different numbers of measurements: MCP minimization (blue dashed line), � 0 minimization (black dotted line), sorted � 1 penalty (red 

dash-dotted line), and � 1 minimization (green solid line). In this experiment n = 10 0 0 , K = 15 , s n = 10 , and sign flip ratio is 10%. (a) using the ideal parameters; (b) using 

parameters selected by 10-fold cross-validation. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

� 2 loss are considered in [8,18] ; the linear loss is used in [9,11] . 

It is reported that the linear loss generally outperforms the one- 

sided � 1 / � 2 loss. Moreover, with proper regularization terms and 

constraints, the linear loss minimization can be solved analytically 

and enjoys great computational effectiveness. 

In regular CS problems, non-convex penalties have been in- 

sightfully investigated and widely applied to enhance sparsity. 

Similarly, those non-convex techniques are applicable to 1bit-CS, 

and the recovery performance is expected to be improved. One ob- 

vious barrier is that nonconvex penalties lead to nonconvex prob- 

lems, which are usually difficult to solve. An interesting result is 

recently represented in [12] , which gives analytical solutions for 

two nonconvex penalties, namely the smoothly clipped absolute 

deviation (SCAD, [19] ) and minimax concave penalty (MCP, [20] ). 

Also Chen and Banerjee [13] propose an algorithm for 1bit-CS us- 

ing the k -support norm. These nonconvex penalties are shown to 

obtain better results than convex ones in both theory and prac- 

tice [12,13] and, therefore, have been extended to other applica- 

tions including the multi-label learning task [21] . 

In this paper, we discuss more convex and nonconvex penal- 

ties, for which analytical solutions can be obtained, and we provide 

fast algorithms for finding these solutions. These penalties include 

SCAD, MCP, � p -norm ( 0 ≤ p ≤ + ∞ , [22] ), � 1 − � 2 norm [23] , sorted 

� 1 penalty [25,26] , and so on. The contributions of this paper can 

be summarized as follows. 

• We analyze a generic model for 1bit-CS and provide a sufficient 

condition for the global optimality. 
• For positive homogeneous penalties, we show that an optimal 

solution can be obtained in two steps: a proximal operator 

and a normalization step. For general penalties, we provide a 

generic algorithm by solving the dual problem. 
• We provide algorithms for finding analytical solutions for three 

nonconvex penalties: MCP, � 0 norm, and the sorted � 1 penalty. 

These algorithms are much faster than the existing 1bit-CS al- 

gorithms for nonconvex penalties and even comparable to that 

for the convex � 1 minimization problem, e.g., our algorithm is 

averagely 200 times faster than the algorithm given in [12] for 

MCP. In addition, we compare these nonconvex penalties with 

the convex � 1 penalty and show that the sorted � 1 performs the 

best in both performance and computational time. 

The rest of this paper is organized as follows. Section 2 briefly 

reviews the existing related 1bit-CS algorithms. The main contri- 

butions, i.e., analytical solutions for different penalties and corre- 

sponding algorithms, are presented in Section 3 . The numerical ex- 

periments are reported in Section 4 . We end this paper with a brief 

conclusion. 

2. Related works 

Model (2) for 1bit-CS has two main disadvantages: (i) it is dif- 

ficult to solve because of the � 0 norm in the objective and the 

constraint ‖ x ‖ 2 = 1 ; (ii) the constraint y i = sgn (u 

� 
i 

x ) does not con- 

sider noisy sign measurements. 

Several approaches are given to deal with both disadvantages. 

For the nonconvexity, the � 0 norm is replaced by the � 1 norm, and 

the constraint ‖ x ‖ 2 = 1 is replaced by other convex constraints. 

The first convex model [27] for 1bit-CS is 

minimize 
x ∈ R n 

‖ x ‖ 1 , 

subject to y i (u 

� 
i 

x ) ≥ 0 , ∀ i = 1 , 2 , . . . , m, 

‖ U 

� x ‖ 1 = r, 

(3) 

where r is a given positive constant. In fact, the solutions for all 

positive r ’s have the same direction and the difference is only on 

the magnitudes of the reconstructed signals. 

However, (3) still cannot be applied when there are noisy mea- 

surements, because, it, same as (2) , requires the sign consistence in 

the measurements. Noisy measurements come from both the noise 

during the acquisition before the quantization and sign flips during 

the transmission. To deal with noisy measurements, Jacques et al. 

[18] introduces the following robust model using the one-sided � 1 
norm, 

minimize 
x ∈ R n 

1 

m 

m ∑ 

i =1 

max 
{

0 , −y i (u 

� 
i x ) 

}
, 

subject to ‖ x ‖ 2 = 1 , 

‖ x ‖ 0 = K. 

The robust model using the one-sided � 2 norm is also introduced. 

Several modifications are designed by Yan et al. [8] , Bahmani et al. 

[28] , Dai et al. [29] to improve their robustness to sign flips and 

noise. 

The linear loss for robust 1bit-CS attracts more attention be- 

cause of its good performance and simplicity. Based on the lin- 

ear loss, many results on sampling complexities are given re- 

cently [9,11–13] . In [9] , the first model using the linear loss for 

1bit-CS is proposed and takes the following formulation, 

minimize 
x ∈ R n 

− 1 

m 

m ∑ 

i =1 

y i (u 

� 
i x ) , 

subject to ‖ x ‖ 2 ≤ 1 , 

‖ x ‖ 1 ≤ s, 

(4) 

where s is a given positive constant. One can also put the � 1 - 

norm in the objective instead of in the constraint, resulting in the 
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