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a b s t r a c t 

This paper presents a novel filter for jointly tracking and classification (JTC) of maneuvering extended 

targets using the standard probability hypothesis density (PHD) framework. For an extended target, the 

extended state that describes the target size, shape and orientation is also estimated, in addition to the 

kinematic state. Assuming that the target size information is known in advance, the presented filter 

can classify the extended target based on different sizes, instead of based on different kinematic mo- 

tion modes in point target tracking. By utilizing the known target size information, the presented filter 

can contribute to a better extended state estimation while classifying, and how a good classification re- 

sult can improve the estimation is mathematically analyzed. Simulation results show that the presented 

filter simultaneously provides a superior tracking performance and the correct classification of multiple 

extended targets, compared to the gamma Gaussian inverse Wishart PHD (GGIW-PHD) filter. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Tracking and classification of multiple maneuvering targets with 

unknown and time-varying number are the two basic procedures 

of a surveillance system. The tracking procedure refers to estimat- 

ing the target state, while the classification procedure refers to 

classifying targets into given categories based on target prior infor- 

mation. However, the two procedures may be coupled [1] and the 

results of the tracking and classification can affect each other. For 

example, the estimation of the target state can be used to classify 

targets based on the prior information stored in the database of a 

system, in turn, a right classification of the target can contribute to 

a more accurate state estimation in the tracking procedure by uti- 

lizing the target prior information. In view of this, a possible solu- 

tion is to simultaneously achieve the two procedures for the better 

performances of both the tracker and classifier, and the strategy 

used in this solution is called the joint tracking and classification 

(JTC) approach. 

Traditional target tracking assumes that each target generates 

at most one measurement [2–8] at each time step, which is called 

the point target tracking. It is worth noting that this assumption is 

true only when the size of a target is smaller than a resolution cell 

of the sensor. Many literatures focus on the JTC of point targets [9–

11] , and they mainly utilize the prior motion models or attributes 
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to classify targets. However, with the development of modern sen- 

sors or the small distance between the target and the sensor, a 

target may occupy several resolution cells and potentially gener- 

ates multiple measurements per time step, which is called the ex- 

tended target [12–25] . Unlike the JTC of point targets, more prior 

information on extended targets could be used into classification 

and this poses a new challenge for JTC of extended targets. 

For extended target tracking, the kinematic state can be de- 

scribed by a Gaussian probability distribution [13] . The extended 

state of an extended target, describing the size, shape and orien- 

tation, can also be estimated by introducing the random matrix 

model [14–23] or random hypersurface model [24–25] . Especially 

the random matrix model, initialed by Koch [14] , draws great at- 

tention in recent years. It models the extended state of the ex- 

tended target as an ellipse that is represented by a symmetric 

positive define (SPD) random matrix, and the random matrix is 

described by an inverse Wishart distribution. In addition to the 

kinematic and extended states, a more general method attempts 

to estimate the measurement rate, which describes the number of 

measurements generated by an extended target at each time step. 

The measurement rate state is modeled as a scale random variable 

and described by a gamma probability density function (pdf). This 

model, firstly appeared in [16] , is called the gamma Gaussian in- 

verse Wishart (GGIW) method and describes the kinematic, exten- 

sion and measurement rate of an extended target using Gaussian, 

inverse Wishart and gamma distributions, respectively. 

The key for JTC of the extended target is how to incorporate 

the prior information into tracking procedure. Provided that the 

size prior information on extended targets is known, one possi- 
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ble solution is to transfer the size prior information into pseudo- 

measurements (generated by prior information) and treat psuedo- 

measurements equally to the true-measurements (generated by 

targets) [26] . Then, the tracking of extended targets can use the 

measurements that include the target prior and real-time infor- 

mation, and the classification procedure can simultaneously be 

achieved according to the target extended state estimation in the 

tracking procedure. However, the algorithm for JTC of extended tar- 

get proposed in [26] is a prototype, and many situations are not 

fully considered, such as orientation mismatch, target maneuver- 

ing, etc. Otherwise, to the best of our knowledge, the problem of 

JTC of extended target has previously not been explored in the ran- 

dom finite set (RFS) framework that is designed for multiple tar- 

get tracking, which obviously does not meet the requirement of a 

system in complicated surveillance areas. Based on the RFS frame- 

work and finite set statistics (FISST) tool, lots of filtering frame- 

works are developed for multi-target tracking and those can be di- 

vided into two categories in our opinion. The first category is the 

suboptimal Bayesian framework that does not propagate full poste- 

rior multi-target RFS, such as probability hypothesis density (PHD) 

[5] , cardinalized PHD (CPHD) [30] and cardinality-balanced multi- 

target multi-Bernoulli (CBMeMBer) [31] frameworks. The second 

category is the optimal Bayesian framework that propagates full 

posterior multi-target RFS. The representative example of the sec- 

ond category is the generalized labeled multi-Bernoulli (GLMB) 

[32–35] framework. Initialed by Vo [32] , it theoretically propagates 

full posterior RFS of which unique and static labels are assigned to 

targets. 

In this paper, based on the extended target PHD (ET-PHD) 

framework, we expand the JTC of the extended target into mul- 

tiple maneuvering targets tracking and present a JTC-GGIW-PHD 

filter, which is capable of joint tracking and classification of an 

unknown and time-varying number of maneuvering extended tar- 

gets in the presence of clutter, newborn targets and missed detec- 

tions. The main contributions of this work are listed as follows: 

First, we present a JTC-GGIW implementation method, where the 

orientation mismatch and target maneuvering problems are con- 

sidered. As an expanded version of the GGIW method, the JTC- 

GGIW method can simultaneously estimate the kinematic, exten- 

sion, measurement rate and classification states of an extended tar- 

get. Second, the JTC-GGIW method is applied in the ET-PHD frame- 

work, thus the resulting filter is called the JTC-GGIW-PHD filter. 

Third, we mathematically analyze how a good classification result 

of the presented filter can improve the performance of tracking in 

extended state estimation. Finally, the presented filter is demon- 

strated on simulated data from real scenarios, compared to the 

original GGIW-PHD filter [16] . 

The rest of this paper is organized as follows: Based on the 

original GGIW approach, Section 2 introduces the JTC-GGIW im- 

plementation method. We expand the JTC-GGIW method into the 

ET-PHD framework and the presented JTC-GGIW-PHD filter will be 

described in Section 3 , and the performance of the presented fil- 

ter are mathematically analyzed in Section 4 . Section 5 demon- 

strates the simulation results of the presented filter, compared to 

the GGIW-PHD filter. Conclusions and future work are presented in 

Section 6 . 

2. JTC-GGIW 

For a whole surveillance system, it contains a sequence of pro- 

cedures, such as detection, tracking, classification and trajectory 

management. Due to coupling relationships of those procedures, 

the joint estimation strategy can be used to simultaneously achieve 

the two or more procedures for a better performance. That jointly 

achieving the tracking and classification procedures is called the 

JTC approach, which is a well-known application of the joint esti- 

mation strategy. 

In this section, to improve the readability, the distributions and 

notations used in original GGIW method are summarized first. 

Then, we present a Bayesian inference for JTC of an extended 

target. Finally, the constant turn model with unknown turn rate 

[27] is introduced into the JTC of extended target framework, and 

the JTC-GGIW implementation method is described. 

2.1. Distributions and notations 

As the foundation of the presented JTC-GGIW method, a brief 

background on the GGIW method [16] will be introduced, es- 

pecially for the used distributions and notations. In the GGIW 

method, the measurement rate, kinematic, and extended states of 

an extended target can be, respectively, modeled as follows: 

(γ , x , X ) (1) 

where measurement rate γ , kinematic state x and extended state X 

can be described using the gamma, Gaussian and inverse Wishart 

distributions, respectively. For a close form of iterative estima- 

tion in Bayesian framework, the pdfs for describing the prior and 

measurement likelihood distributions must follow the conjugate 

principle. The exponential family is a well-known conjugate prior 

class, and the conjugate pairs used in this method are Gaussian- 

Gaussian, gamma-Poisson and Wishart-inverse Wishart. The defini- 

tions of those distributions and some notations used in the GGIW 

method are summarized in Table 1 . 

2.2. Bayesian inference 

Considering jointly processing the tracking and classification 

procedures, an extended target at time k can be remodeled as 

( γk , x k , X k , C ) (2) 

where C = ( C 1 , ..., C c , ..., C n c ) , n c denotes the number of models 

in database and indicates that there are n c different prior classes 

stored in database, and C c represents the cth class. Usually, the 

states within different classes are independent of each other, and it 

is worth noting that the number of models can be assumed to be 

a constant for sake of simplification. Then, the probability function 

of the target state at time k is given by 

p( γk , x k , X k , C | Z k ) = p( γk , x k , X k | C , Z k ) · p( C | Z k ) 
= 

n c ∑ 

c=1 

p(γ c 
k , x 

c 
k , X 

c 
k | C c , Z k ) p( C c | Z k ) (3) 

where Z k = ( Z 1 , ..., Z k ) denotes all measurements up to time k 

and Z k is the measurement set received at time k , and γ c 
k 

, x c 
k 

and X 

c 
k 

denotes the kinematic, extended and measurement rate 

states of the extended target in the cth class, respectively. The pdf 

p(γ c 
k 
, x c 

k 
, X 

c 
k 
| C c , Z k ) represents the tracking part. Due to the dis- 

creteness definition of the class, the probability function p( C | Z k ) = 

{ p( C 1 | Z k ) , ..., p( C c | Z k ) , ..., p( C n c | Z k ) } is called the probability mass 

function (pmf), which represents the classification part. Then, Us- 

ing Bayesian formulas and under the one-order Markov state tran- 

sition assumption, the inference of the tracking part can be ob- 

tained, i.e. 

p 
(
γ c 

k , x 
c 
k , X 

c 
k | C c , Z k 

)
= 

(
�c 

k 

)−1 
p 
(
Z k | γ c 
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c 
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(
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(
Z p,c,k | γ c 

k , x 
c 
k , X 

c 
k , C 

c , Z k −1 
)

·
∫ 

p 
(
γ c 

k , x 
c 
k , X 

c 
k | γ c 

k −1 , x 
c 
k −1 , X 

c 
k −1 

)
p 
(
γ c 

k −1 , x 
c 
k −1 , X 

c 
k −1 | C c , Z k −1 

)
d γ c 

k −1 d x 
c 
k −1 d X 

c 
k −1 (4) 
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