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a b s t r a c t

In this paper, the stabilization problem is studied for a class of networked control systems (NCSs) with
delays, packet disordering andpacket dropouts. A newpacket reorderingmethod is presented to dealwith
packet disordering and to choose the newest control input. A relationship between the reordered packet
over two consecutive sampling intervals is given for the NCS with both time delays and packet dropouts.
A sufficient condition for the NCS to be exponentially stable is presented by using the average dwell-
time method. Finally, an illustrative example is given to demonstrate the effectiveness of the proposed
method.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Network-induced delay and packet dropout are two main
problems in networked control system (NCS), and have attracted
much research interest, see for example Gao and Chen (2007),
Garcia and Antsaklis (2013), Xiong and Lam (2007), Yang and Han
(2013), Zhang, Gao, and Kaynak (2013) and references therein.
Compared with constant delays, the time-varying one is more
difficult to treat, especially, when the delay is larger than one
sampling period (long delay). Since the delay may be larger
than one sampling period, more than one control signals may
arrive at the actuator during one sampling interval. Moreover, the
transmission of data packets may not necessarily follow a ‘‘first
send first arrive’’ principle (Zhao, Kim, Liu, & Rees, 2012). This
means that the newest control signal may arrive at the actuator
before the older one, this is the so-called packet disordering
problem Liu, Yu, and Zhang (2011a,b). The modeling and stability
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analysis of NCSs with packet disordering has attracted much
research attention, see for example Cloosterman et al. (2010);
Cloosterman, van de Wouw, Heemels, and Nijmeijer (2009), Li,
Zhang, Yu, and Cai (2011), Zhang and Yu (2008, 2009). Due
to limited network transmission capacity, packet dropouts are
usually inevitable. Some results on NCSs concerning both delay
and packet dropout issues were presented in García-Rivera and
Barreiro (2007), Wang, Shen, Shu, andWei (2012), Xia, Liu, Fu, and
Rees (2009) and Yang, Liu, Shi, Thomas, and Basin (2014); Yang,
Shi, Liu, and Gao (2011). It should be pointed out that the packet
disordering problem is not considered in the aforementioned
results for NCSs in the presence of delays and packet dropouts. In
Zhang and Han (2012),H∞ filtering problem has been investigated
for NCSs with delays, packet disordering and packet dropouts.
However, the explicit expression for how to choose the newest
data signal was not given in Zhang and Han (2012).

On the other hand, due to the time-varying delays and packet
dropouts, the number of available control signals at the actuator
vary over different sampling intervals. Therefore, the NCS is
naturally a switched systemwith a group of subsystems describing
various system dynamics on different sampling intervals (Hetel,
Daafouz, & Lung, 2008; Lin & Antsaklis, 2005; Wang, Liu, Wang,
Rees, & Zhao, 2010). In response to the above discussion, we
investigate the stability analysis problem for a class of NCSs with
delays and packet dropouts, and focus on solving the packet
disordering problem and the switched dynamic caused by long
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Fig. 1. Time diagram of signal transmitting in the NCS.

delay and packet dropout. The main contributions of the paper
are as follows: (1) A new packet reordering method is proposed
to deal with packet disordering and to choose the newest control
signal. (2) A relationship between the reordered packet over two
consecutive sampling intervals is given for the NCS with both
network-induced delays and packet dropouts. (3) A sufficient
condition for exponential stability of the NCS is derived by using
the average dwell-time method. Finally, an example is given to
demonstrate the effectiveness of the proposed method.

2. Modeling of the NCS

The plant in the NCS is described by the following continuous-
time linear system model
ẋ(t) = Apx(t) + Bpu(t) (1)
where x(t) ∈ Rn is the system state, u(t) ∈ Rm is the control input,
Ap and Bp are constant matrices with appropriate dimensions. The
sensor is time-driven with sampling period T , the controller is
event-driven, the actuator is time-driven and has a receiving buffer
containing the most recent data packet from the controller, time
delay τk is assumed to be bounded by 0 ≤ τk ≤ dT , where d is
a known finite integer. Since the actuator is time-driven, one has
τk ∈ N1 = {0, 1, 2, . . . , d} T .

For simplicity, we first consider only the delay issue. Since the
network-induced delay may be larger than one sampling period,
more than one control signals may arrive at the actuator during
one sampling interval, but only one control signal is adopted by the
actuator. Then, the problem is how to choose the newest control
signal. Moreover, packet disordering problem arises when the
newest packet arrives at the actuator before the older ones. A time
diagram of the signal transmission is illustrated in Fig. 1, in which
it is assumed that d = 3, and at most four control signals may
arrive at the actuator during one sampling interval. Furthermore,
control signal u(k+2) arrives at the actuator earlier than u(k+1).
Thus, u(k + 2) is adopted at time (k + 3)T . This phenomenon is
called packet disordering. In order to use the newest control signal,
u(k + 1) will be discarded.

By the aforementioned analysis, it can be seen that the adopted
control signal may take values in {u(k − d + 1), . . . , u(k − 1),
u(k)} at sampling instant kT , which will result in d + 1 different
dynamics of the system. Moreover, during the sampling interval
[kT , (k + 1)T ), the system dynamics are actually determined by
{τk−d+1, . . . , τk−1, τk}. Therefore, we use a vector τ(k) = [τk−d+1,
. . . , τk−1, τk] to represent the control signal that is applied at the
actuator, and define a vector-valued function f : τ(k) → σ(k) to
map τ(k) into a scalar σ(k) ∈ N2 = {0, 1, . . . , d}. The expression
of σ(k) is given in detail as follows

σ(k) =



0, τk = 0, τk−j ∈ N1, j = 1, 2, . . . , d − 1
1, τk ≥ T , τk−1 ≤ T , τk−j ∈ N1,

j = 2, . . . , d − 1
2, τk−i ≥ (i + 1)T , i = 0, 1, τk−2 ≤ 2T ,

τk−j ∈ N1, j = 3, . . . , d − 1
...

...
d, τk−i ≥ (i + 1)T , i = 0, 1, . . . , d − 1

(2)

and then the adopted control signal at time kT is u (k − σ(k)).
Eq. (2) presents an explicit logic expression for how to choose
the newest control signal and eliminating the impact of packet
disordering. Also, σ(k) can be given concisely as follows
σ(k) = min {i|τk−i − iT ≤ 0, i = 0, 1, . . . , d} . (3)
Then, we have the following proposition.

Proposition 1. If σ(k) = r, then σ(k + 1) ≤ r + 1.
Proof. Let σ(k+1) = min


j|τk+1−j − jT ≤ 0, j = 0, 1, . . . , d


. If

σ(k) = r , it follows from (3) that τk−r − rT ≤ 0 and τk−i − iT >
0 for i < r . From the above analysis, it can be obtained that
τk+1−(r+1) − (r +1)T < 0, which infers that σ(k+1) ≤ r +1. This
completes the proof. �

Remark 1. The packet disordering can be effectively eliminated by
applying themechanism given in (3). Assuming that the packets of
time (k − i − 1)T and (k − i)T are disordering, then one obtains
τk−i−1 ≥ τk−i + 2T . Therefore, if τk−i−1 − (i + 1)T ≤ 0, it must be
τk−i − iT < 0, which means that the actuator will use the newest
packet of time (k − i)T and discard packet of time (k − i − 1)T .

Let θk be the number of consecutive packet dropout with θk ∈

[0, s] , s ≤ d at time kT , and τk = dT if the packet of time kT
is lost. A time diagram of the signal transmitting with both time
delay and packet dropout is illustrated in Fig. 1. In view of (2), it is
difficult to handle packet dropout in a unified framework because
σ(k) ∈ {0, 1, . . . , d + s}. Inspired by Eq. (3), the following result
can be derived with both time delays and packet dropouts
σ(k) = r + θk−r (4)
where r = min {i|τk−i − (i + θk−i)T ≤ 0, i = 0, 1, . . . , d}.

Remark 2. If there is no packet dropout during sampling interval
[(k − d)T , kT ], one has θk−i = 0 for i ∈ {0, 1, . . . , d}. Then
(4) equals to (3). If θk−r ≠ 0, the packets of time (k − r)T to
(k−r−θk−r)T are dropout and τk−i−(i+θk−i)T > 0 for 0 ≤ i < r ,
which means that the packet of time (k − i)T for 0 ≤ i < r is not
successfully delivered during interval ((k − r)T , kT ]. Therefore,
Eq. (4) shows that the actuator always uses the newest packet
during interval [(k − d − s)T , kT ]. Similar to Proposition 1, the
following proposition can be obtained.

Proposition 2. If σ(k) = r + θk−r , 0 ≤ θk−r ≤ s, then σ(k + 1) ≤

r + θk−r + 1 and σ(k + 1) ≠ r + 2, . . . , r + θk−r .
Proof. By using a similar method to the proof of Proposition 1, it
can be easily obtained that σ(k + 1) ≤ r + θk−r + 1. Next, we will
prove σ(k + 1) ≠ r + 2, . . . , r + θk−r .

If the packet of time (k − r)T is successfully delivered during
interval [(k− d)T , kT ], it means θk−r = 0. Thus, σ(k+ 1) ≤ r + 1.
If the packet of time (k − r)T is dropout, then one has

r + θk−r = r + 1 + θk−r−1 = · · · = r + θk−r + θk−r−θk−r (5)

which implies that θk−r−θk−r = 0. If the packet at time (k− r +1)T
is dropout, the following result can be obtained by (5)

r − 1 + θk−r+1 = r + θk−r . (6)

It follows from (6) that σ(k) = r − 1 + θk−r+1. However, it is
inconsistent with condition σ(k) = r + θk−r . Therefore, if the
packet of time (k− r)T is dropout, the packet at time (k− r + 1)T
must be successfully delivered.

Let σ(k + 1) = j̄ + θk+1−j̄. If τk+1−j − (j + θk+1−j)T > 0 for
0 ≤ j ≤ r , then j̄ = r + 1 and σ(k + 1) = r + θk−r + 1. If there
exists a j for 0 ≤ j ≤ r satisfied τk+1−j − (j + θk+1−j)T ≤ 0, it
follows from (5) and (6) that j̄ + θk+1−j̄ ≤ r because the packet
at time (k − r + 1)T must be successfully delivered. Therefore,
σ(k + 1) ≤ r and σ(k + 1) ≠ r + 1, r + 2, . . . , r + θk−r . The
proof is thus completed. �
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