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a b s t r a c t 

The purpose of this paper is manifold. In a first part, we present a new alternating least squares (ALS)- 

based method for estimating the matrix factors of a Kronecker product, the so-called Kronecker ALS 

(KALS) method. Four other methods are also briefly described. In a second part, we consider the de- 

sign of multiple-input multiple-output (MIMO) wireless communication systems using tensor modelling. 

Eight systems are presented in a unified way, and their theoretical performance is compared in terms 

of maximal diversity gain. Exploiting a Kronecker product of symbol and channel matrices, and applying 

the algorithms introduced in the first part, we propose three semi-blind and two supervised receivers, 

called Kronecker receivers, for jointly estimating the channel and the transmitted symbols. Necessary 

identifiability conditions are established. Finally, extensive Monte Carlo simulation results are provided 

to compare the performance of three tensor-based systems, on the one hand, and of the five proposed 

Kronecker receivers for the tensor space-time-frequency (TSTF) coding system, on the other hand. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Kronecker products, also known as tensor products, of matri- 

ces are currently used in many signal and image processing ap- 

plications, like in compressive sensing with Kronecker dictionaries 

[1] and for image restoration [2] . They are useful in system the- 

ory [3] and in numerical linear algebra to write and solve linear 

matrix equations like Lyapunov and more generally Sylvester equa- 

tions [4] . They also play an important role to simplify and imple- 

ment fast transform algorithms like fast Fourier, Walsh-Hadamard, 

and Haar transforms [5,6] . 

Recently, Kronecker and Khatri-Rao (column-wise Kronecker) 

products have been extensively employed in tensor-based system 

analysis and modelling, since such products naturally appear in 

matrix unfoldings of basic tensor decompositions, like the paral- 

lel factor (PARAFAC) [7] and Tucker [8] ones, and more generally 

of constrained PARAFAC models [9] . Reviews of the history and ap- 

plications of the Kronecker product can be found in [3,5,6,10,11] . 

In the first part of the paper, we propose a new efficient com- 

putational algorithm based on the alternating least-squares (ALS) 

method for solving the Kronecker product approximation problem, 

i.e. for determining two matrices A and B of predetermined sizes, 
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whose Kronecker product approximates a given matrix C in the 

sense of the minimization of the Frobenius norm ‖ C − A � B ‖ F . We 

also briefly describe four other methods for solving this problem. 

During the last decade, tensorial approaches have been widely 

developed to exploit multiple diversities in wireless communica- 

tion systems. The principle of diversity techniques is to exploit 

several copies of the information symbols to be recovered at the 

receiver. This symbol repetition can result from multipath (due 

to multiantennas at the transmitter and receiver), repeated trans- 

mission of same symbols during several time-slots, and also from 

specific codings like, for instance, space-time (ST), space-frequency 

(SF) or space-time-frequency (STF) codings, which induce spatial 

multiplexing and temporal spreading. Tensor-based multiple-input 

multiple-output (MIMO) systems allow to improve link reliability 

as well as to jointly and semi-blindly estimate the channel and the 

transmitted symbols by means of deterministic receivers operating 

on data blocks. They have the advantage not to require a priori 

channel knowledge and long training sequences for estimating the 

channel. Only very few pilot symbols are needed to eliminate scal- 

ing ambiguities inherent to each particular tensor model. More- 

over, tensor codings lead to natural tensor formulations of trans- 

mitted and received signals, and consequently to tensor system 

modellings. Tensor-based communication systems can be classified 

according to: 

https://doi.org/10.1016/j.sigpro.2017.12.015 

0165-1684/© 2017 Elsevier B.V. All rights reserved. 

https://doi.org/10.1016/j.sigpro.2017.12.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/sigpro
http://crossmark.crossref.org/dialog/?doi=10.1016/j.sigpro.2017.12.015&domain=pdf
mailto:nazareth@decom.fee.unicamp.br
mailto:favier@i3s.unice.fr
mailto:romano@dmo.fee.unicamp.br
https://doi.org/10.1016/j.sigpro.2017.12.015


M.N. da Costa et al. / Signal Processing 145 (2018) 304–316 305 

• the type of system (code-division multiple access (CDMA), 

orthogonal frequency division multiplexing (OFDM), CDMA- 

OFDM); 
• the type of coding (ST, STF; matrices/tensors); 
• the presence (in [12–16] ) or not (in [17–22] ) of resource alloca- 

tion, and their type (matrices/tensors); 
• the type of tensor model: PARAFAC [17,18] , block PARAFAC 

[19,20] , BTD (block term decomposition) [21] , CONFAC (con- 

strained PARAFAC) [12] , PARAFAC-Tucker2 (PARATUCK2) [13] , 

PARATUCK-(2,4) [14] , generalized PARATUCK [15,16] , nested 

PARAFAC [22] . 

A brief history of tensor-based systems is now reviewed by 

beginning with the fundamental work [17] , which links direct- 

sequence CDMA (DS-CDMA) systems with a PARAFAC model. In 

[18] , a space-time (ST) coding based on a Khatri-Rao (KR) prod- 

uct, denoted KRST, was derived by combining a linear precoding for 

spatial multiplexing with a linear post-coding for temporal spread- 

ing. In [20] , the idea of tensor coding was introduced for the first 

time. A three dimensional tensor allows to combine space-time 

coding and spatial multiplexing, hence the term space-time mul- 

tiplexing (STM) coding. The third-order tensor containing the re- 

ceived signals satisfies a block constrained PARAFAC model, with 

two constraint matrices which depend on the multiplexing param- 

eters. 

In [12] , a generalized ST spreading scheme was proposed for 

DS-CDMA systems, using a precoding tensor which allocates the 

users’ data streams and spreading codes to transmit antennas, by 

means of three resource allocation matrices. The resulting trans- 

mission structure led to a third-order tensor model, called CONFAC, 

for the received signals. In [13] , space-time spreading-multiplexing 

was proposed by combining a matrix precoding with stream- and 

antenna-to-slot matrix allocations. The third-order tensor of re- 

ceived signals then satisfies a PARATUCK2 model. In [14] , the sys- 

tem of [13] was extended by considering a third-order tensor 

space-time coding, denoted TST, in order to exploit an extra chip 

diversity. That leads to a fourth-order PARATUCK-(2,4) model for 

the received signals tensor. 

More recently, tensor approaches have been developed for 

OFDM, and OFDM-CDMA systems. In [22] , a double Khatri-Rao 

STF coding, denoted DKRSTF, was proposed for OFDM systems. 

This coding constitutes an extension of the KRST coding [18] , ob- 

tained by combining space-frequency pre-coding with time spread- 

ing. The received signals form a fourth-order tensor satisfying a 

nested PARAFAC model. In [15] , a spatial coding matrix is com- 

bined with two third-order interaction tensors which control a 

joint time-frequency allocation of data streams and transmit an- 

tennas. In [16] , the case of OFDM-CDMA systems is considered. The 

tensor space-time-frequency (TSTF) coding system was developed 

with the double objective of increasing the diversity gain by means 

of a fifth-order coding tensor, which allows to exploit four diver- 

sities (space, time, chip, and frequency) at the receiver, and sim- 

plifying the resource allocation by using a fourth-order allocation 

tensor to control the assignment of data streams to transmit an- 

tennas in the time-frequency domain. That leads to a generalized 

PARATUCK model for the fifth-order tensor containing the received 

signals. 

The main contributions of this paper are summarized as fol- 

lows: 

• A new algorithm, called Kronecker-based ALS and denoted 

KALS, is proposed for solving the Kronecker product approxi- 

mation problem. 
• Eight tensor-based MIMO systems are presented in a unified 

way, using a generalized PARATUCK model [16] . 
• A comparative theoretical performance analysis is carried out 

for the considered tensor-based systems, and the maximal 

diversity gain is derived under the assumption of flat or 

frequency-selective fading channels. The transmission rate and 

the bandwidth of each system are also given. 
• Five new receivers exploiting a Kronecker product of the chan- 

nel and symbol matrices are derived for jointly estimating these 

matrices, three being semi-blind and two supervised. A neces- 

sary identifiability condition is established for each system. 
• Extensive Monte Carlo simulation results are shown to com- 

pare the performance of three tensor-based systems, with zero- 

forcing (ZF) receivers in the case of perfect channel knowledge, 

on the one hand, and with the KALS receivers for joint semi- 

blind symbol/channel estimation, on the other hand. Then, the 

performance of the five proposed Kronecker receivers is com- 

pared for the TSTF system. 

The rest of the paper is organized as follows. In Section 2 , we 

present the KALS method for solving the Kronecker product ap- 

proximation problem. Four other algorithms are also described. In 

Section 3 , eight tensor-based systems are presented in a unified 

way using a generalized PARATUCK tensor model. In Section 4 , 

a comparative theoretical performance analysis is carried out for 

these systems. Section 5 presents five new Kronecker receivers 

which use the Kronecker product approximation algorithms intro- 

duced in Section 2 . Simulation results are shown in Section 6 to 

illustrate and compare the performance of the STF, TST, and TSTF 

systems, and also of the five proposed Kronecker receivers for the 

TSTF system. Finally, Section 7 concludes the paper with some per- 

spectives for future work. 

Notations and properties: Scalars, column vectors, matrices, and 

higher-order tensors are written with lower-case, boldface lower- 

case , boldface upper-case, and calligraphic letters, i.e. ( a , a , A , 

A ), respectively. A 

T , A 

H , A 

∗, and A 

† stand for transpose, Hermitian 

transpose, complex conjugate, and Moore-Penrose pseudo-inverse 

of A , respectively. e (N) 
n is the n -th canonical basis vector of R 

N , I N 
is the identity matrix of order N , 1 N is the N × 1 all-ones column 

vector, and ‖ · ‖ F is the Frobenius norm. The operator vec (·) forms 

a column vector by stacking the columns of its matrix argument, 

whereas diag (·) forms a diagonal matrix from its vector argument, 

and bdiag ( A 1 , . . . , A K ) forms a block-diagonal matrix with K diag- 

onal blocks. The inverse of the vectorization operator is denoted 

unvec , so that x = vec ( X ) ∈ C 

JI ←→ X = unvec ( x ) ∈ C 

I×J . 

By convention, the order of dimensions in a product IJK is 

linked to the order of variation of the corresponding indices ( i , j , 

k ). For instance, given a third-order tensor X ∈ C 

I×J×K with entry 

x i , j , k , its tall mode-1 matrix unfolding X JK×I ∈ C 

JK ×I corresponds to 

a combination of its modes ( j , k ) such that j varies more slowly 

than k , implying x i, j,k = [ X JK×I ] ( j−1) K+ k,i . 

The Hadamard, Kronecker, and Khatri-Rao products are de- 

noted by �, �, and �, respectively. Given A ∈ C 

I×J , B ∈ C 

K×L , C ∈ 

C 

J×M , D ∈ C 

L ×N , we have 

( A � B ) ( C � D ) = ( A C ) � ( B D ) ∈ C 

IK×MN , (1) 

A � B = 

(
A I J 
)

� ( I K B ) = ( A � I K ) 
(
I J � B 

)
, (2) 

A � B = ( I I A ) � ( B I L ) = ( I I � B ) ( A � I L ) . (3) 

Given two tensors A ∈ C 

I 1 ×···×I N ×J N+1 ×···×J N+ P and B ∈ 

C 

I 1 ×···×I N ×K N+1 ×···×K N+ Q , of respective orders N + P and N + Q, we 

define the Hadamard product of A with B, along their common 

modes ( i 1 , ���, i N ), as the tensor C = A �
{ i 1 , ··· ,i N } 

B of order N + P + Q

whose entries are given by c i 1 , ··· ,i N , j N+1 , ··· , j N+ P ,k N+1 , ··· ,k N+ Q = 

a i 1 , ··· ,i N , j N+1 ··· , j N+ P b i 1 , ··· ,i N ,k N+1 , ··· ,k N+ Q . 

A background with extended bibliography on tensor tools and 

decompositions, and their applications, is presented in tutorial pa- 
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