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a b s t r a c t

This paper addresses the problem of H∞ state feedback control design for discrete-time Markov jump
linear systems (MJLS) with uncertain transition probability matrix. The main novelty is that, differently
from the existing approaches in the literature, the proposed conditions allow the use of polynomially
parameter-dependent Lyapunov matrices to certify the closed-loop stability of the MJLS. Therefore, the
method is able to provide H∞ controllers in cases where the other techniques fail. The synthesis condi-
tions are given in terms of linear matrix inequality relaxations. Examples illustrate the main advantages
of the proposed control design method when compared to other approaches from the literature.

© 2014 Elsevier Ltd. All rights reserved.

1. Introduction

Various dynamical systems, like economy, manufacturing and
aerospace plants, suffer abrupt variations in their structure or pa-
rameters for many reasons, including changes in the operating
point of a linearized model, component failures, and other sim-
ilar issues. These plants can be adequately modeled by a class
of stochastic hybrid systems named Markov jump linear systems
(MJLS). Many theoretical results extending the usual concepts of
stability, H2 and H∞ norms have been developed for this class of
systems (see Boukas, 2005; Costa, Fragoso, & Marques, 2005 and
references therein). An extra motivation for those results comes
from networked control systems (NCS) whose packet losses and
data delivery features behave similarly to discrete-time MJLS.

In the discrete-time case, each individual operation mode of
the MJLS is described by a set of difference equations depending
upon a random variable whose evolution is governed by a stochas-
tic process depicted by a Markov chain associated to a transition
probability matrix. In practical problems, it can be hard or costly
to obtain the exact information about the transition probabilities.
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For instance, in NCS, random packet dropouts or time delays are
difficult to be measured (Li & Shi, 2012). In view of that, the as-
sumption that the probabilities could be affected by uncertain pa-
rameters has been incorporated into themodels. The pioneer work
dealing with uncertain probabilities was probably El Ghaoui and
Ait-Rami (1996), where a bounded scalar parameter multiplies the
nominal transition probability matrix. Since then, different types
of uncertainties affecting the transition probability matrix have
been considered, roughly classified in three main groups: partly
unknown, when only a few elements are precisely given (Zhang
& Boukas, 2009a,b,c; Zhang & Lam, 2010); bounded, when the en-
tries lie within a bounded interval (that is, the available informa-
tion about the probabilities is inaccurate) (Boukas, 2009; Karan,
Shi, & Kaya, 2006); unknownbut belonging to a polytope (de Souza,
2006; Oliveira, Vargas, do Val, & Peres, 2009). Concerning the avail-
ability of the Markov modes, as pointed out in do Val, Geromel,
and Gonçalves (2002), it may be limited by cost or physical acces-
sibility. To overcome this problem, one solution is to designmode-
independent or partially mode-dependent controllers or filters (de
Souza, Trofino, & Barbosa, 2006; do Val et al., 2002; Liu, Ho, & Sun,
2008).

With respect to the problem of state feedback control design for
discrete-time MJLS with uncertain transition probability matrix, a
common strategy is to employ parameter-independent Lyapunov
matrices, a constant one for each operation mode, to ensure the
closed-loop stability of the uncertain MJLS (quadratic stability)
(El Ghaoui & Ait-Rami, 1996; Zhang & Boukas, 2009c; Zhang &
Lam, 2010). However, a more general class of Lyapunov matrices,
depending on the uncertain parameters, can be used to improve
the results and to provide a feasible solution when the methods
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based on constant Lyapunovmatrices fail, as discussed in de Souza
(2006). Although parameter-dependent Lyapunov matrices have
been employed to certify closed-loop stability in the problems of
H2 control (Morais, Braga, Oliveira, & Peres, 2013; Oliveira et al.,
2009), only parameter-independent Lyapunov matrices have been
used for H∞ state feedback control (Boukas, 2009; Gonçalves,
Fioravanti, & Geromel, 2012; Zhang & Boukas, 2009a). Probably,
this is due to the fact that stability and H2 norm conditions for
MJLS have primal and dual versions, allowing a direct linearization
through a change of variables, while the bounded real lemma for
MJLS has only a primal formulation (Seiler & Sengupta, 2003).
This technical communique proposes a new strategy to address
the H∞ state feedback control problem for discrete-time MJLS.
The main novelty of the approach is that polynomially parameter-
dependent Lyapunov matrices can be used to assess closed-loop
stability with a bound to the H∞ norm of the system. Moreover,
all types of uncertainties (polytopic, interval and completely
unknown entries) can be considered in a systematic way (Morais
et al., 2013) bymeans of the multi-simplex methodology (Oliveira,
Bliman, & Peres, 2008). The efficiency and advantages of the
proposed approach are illustrated by numerical examples.

2. Problem formulation

Consider the discrete-timeMJLS in a fixed complete probability
space (Ω, F , {Fk} , Γ ) described asx(k + 1) = A(θk)x(k) + B(θk)u(k) + E(θk)w(k)

z(k) = Cz(θk)x(k) + Dz(θk)u(k) + Ez(θk)w(k),
w(k) ∈ L

nw
2 , E


∥x(0)∥2 < ∞, k ≥ 0

(1)

where x(k) ∈ Rnx is the system state, u(k) ∈ Rnu is the con-
trol input, w(k) ∈ Rnw is the noisy input, and z(k) ∈ Rnz is the
controlled output. The Markov chain {θk; k ≥ 0} takes values in
a finite set K , {1, . . . , σ } with σ modes, such that the jump-
ing process is governed by a transition probability matrix Γ =

[pij], with pij ≥ 0 and


i∈K pij = 1, ∀i, j ∈ K, where pij =

Pr (θk+1 = j | θk = i) , ∀k ≥ 0. For ease of notation, whenever pos-
sible, θk is replaced by i, ∀i ∈ K.

The aim of this paper is to propose a new technique to design
an H∞ state feedback controller for MJLS with uncertain transi-
tion probability matrix and complete, partial or null availability
of operation modes2 such that the resulting closed-loop system is
stochastically stable. To this end, it is necessary to present a gen-
eralization for the concept of stability applied to MJLS. This defi-
nition, named as mean square stability (MSS) (Costa et al., 2005),
ensures that E [∥x(k)∥] → 0 as k → ∞ for any initial condition
x0 ∈ Rnx , θ0 ∈ K.

The proposed conditions can deal with a transition probability
matrix Γ affected by different types of uncertainties. Analogously
to Boukas (2009), each probability pij can lie inside the interval
[pij, pij] or, as in Zhang and Boukas (2009a,b,c), the elements can
be completely unknown, that is, pij = ?. In this case, the minimum
and maximum bounds of each unknown element can be inferred,
respectively, by pij = 0 and the constraint of unit summation of
the probabilities in the ith row.

To handle all the different types of uncertainties, this paper
employs a systematic procedure3 performed in two steps. The first
step (similarly to Gonçalves et al., 2012 and Morais et al., 2013)
models each one of the m uncertain rows of Γ as an uncertain

2 Note that if a mode-dependent controller is sought, the information about the
operation mode must be available in real time.
3 A Matlab routine is available for download at http://www.dt.fee.unicamp.br/

∼ricfow/programs/Gamma_Multi_Simplex.m.

vector belonging to the unit simplex ΛNr , r = 1, . . . ,m, given
by

ΛNr ,

ζ ∈ R

Nr :

Nr
i=1

ζi = 1, ζi ≥ 0, i = 1, . . . ,Nr


.

For instance, considering

Γ =


? ?

[0.3, 0.8] [0.5, 0.9]


, (2)

the first row, denoted p1(α), can be written as a convex combi-
nation of the vertices p(10)

1 = [1 0] and p(01)
1 = [0 1], that is,

p1(α) = α11p
(10)
1 + α12p

(01)
1 , (α11, α12) ∈ Λ2. The vertices of the

second row p2(α) are p(10)
2 = [0.3 0.7] and p(01)

2 = [0.5 0.5],
such that p2(α) = α21p

(10)
2 + α22p

(01)
2 , with (α21, α22) ∈ Λ2.

In the second step, following the methodology presented in
Morais et al. (2013), the uncertain parameters are combined into
one single domain, created by the Cartesian product of m unit
simplexes Λ = ΛN1 × · · · × ΛNm , called multi-simplex (Oliveira
et al., 2008). The representation of the uncertain probabilitymatrix
given by (2), in the multi-simplex domain, yields the following
polynomial matrix

Γ (α) = α11α21Γ
(1010)

+ α11α22Γ
(1001)

+ α12α21Γ
(0110)

+ α12α22Γ
(0101), α = (α1, α2) ∈ Λ,

with matrix coefficients

Γ (1010)
=


1 0
0.3 0.7


, Γ (1001)

=


1 0
0.5 0.5


,

Γ (0110)
=


0 1
0.3 0.7


, Γ (0101)

=


0 1
0.5 0.5


.

It is important to emphasize that the proposed approach can also
be used in the casewhere the transition probabilitymatrix belongs
to a polytopic domain (El Ghaoui & Ait-Rami, 1996; Oliveira et al.,
2009).

The H∞ norm is defined as an induced energy gain from
the input vector w(k) to the to-be-controlled output vector z(k).
Generally, this performance index can be computed by a set of
coupled algebraic Riccati equations. However, when the MJLS is
affected by uncertainties, this strategy canno longer be applied and
linear matrix inequality (LMI) conditions become an effective tool
to solve this problem (Boukas, 2009; Gonçalves et al., 2012; Zhang
& Boukas, 2009a). The next lemma, an extension of Seiler and
Sengupta (2003) for the multi-simplex case, presents parameter-
dependent LMI conditions associated to anH∞ guaranteed cost for
an MJLS with uncertain transition probability matrix Γ (α).

Lemma 1. System (1), with Bi and Dz i identically null, is MSS and
γ is an upper bound to the H∞ norm of system (1) if and only if
there exist symmetric positive definite parameter-dependent matrices
Pi(α) ∈ Rnx×nx , ∀i ∈ K, such that for each i ∈ K and for all
α ∈ Λ, being Ppi(α) =

σ
j=1 pij(α)Pj(α), the parameter-dependent

inequalities hold
Ai Ei
Cz i Ez i

T 
Ppi(α) 0

0 I

 
Ai Ei
Cz i Ez i


−


Pi(α) 0
0 γ 2I


< 0. (3)

Lemma 1 presents an infinite dimension problem for the
computation of the H∞ worst case norm of system (1) since the
conditions must be fulfilled for all α ∈ Λ. However, as proved in
Bliman (2004) and extended in Oliveira et al. (2008) for the multi-
simplex domain, such robust (parameter-dependent) LMIs admit
a homogeneous polynomial solution of sufficiently large partial
degrees, whenever one solution exists.

http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m
http://www.dt.fee.unicamp.br/~ricfow/programs/Gamma_Multi_Simplex.m


Download English Version:

https://daneshyari.com/en/article/695800

Download Persian Version:

https://daneshyari.com/article/695800

Daneshyari.com

https://daneshyari.com/en/article/695800
https://daneshyari.com/article/695800
https://daneshyari.com

