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a b s t r a c t 

Exact reconstruction of a sparse signal for an under-determined linear system using the � 0 -measure is, 

in general, an NP-hard problem. The most popular approach is to relax the � 0 -optimization problem to 

an � 1 -approximation. However, the strength of this convex approximation relies upon rigid properties on 

the system, which are not verifiable in practice. Greedy algorithms have been proposed in the past to 

speed up the optimization of the � 1 problem, but their computational efficiency comes at the expense of 

a larger error. In an effort to control error and complexity, this paper goes beyond the � 1 -approximation 

by growing neighborhoods of the � 1 -solution that moves towards the optimal solution. The size of the 

neighborhood is tunable depending on the computational resources. The proposed algorithm, termed Ap- 

proximate Kernel RecONstruction (AKRON), yields significantly smaller errors than current greedy meth- 

ods with a controllable computational cost. By construction, the error of AKRON is smaller than or to 

equal the � 1 -solution. AKRON enjoys all the error bounds of � 1 under the restricted isometry property 

condition. We benchmarked AKRON on simulated data from several under-determined systems, and the 

results show that AKRON can significantly improve the reconstruction error with slightly more computa- 

tional cost than solving the � 1 problem directly. 

© 2017 Elsevier B.V. All rights reserved. 

1. Introduction 

Many engineering problems are formulated as inverse prob- 

lems, which is where the number of parameters ( p ) greatly ex- 

ceeds the number of measurements ( n ) available. Examples in- 

clude: source estimation of electroencephalographic (EEG) and 

magnetoencephalographic (MEG) data [1,2] , reverse-engineering of 

genetic regulatory networks from high-throughput gene expression 

data [3,4] , magnetic resonance imaging [5] , information theory and 

communication engineering [6] , and electromagnetics and antenna 

design [7] . These inverse problems, known as “large p small n ”, 

pose a challenge, because of the non-identifiability of a solution. 

Additional constraints or prior knowledge are needed to solve such 

under-determined systems. In many cases, such as inference of ge- 

netic regulatory networks [3,4] , we are interested in the spars- 

est solution. The objective is then to recover the sparsest signal, 

x ∈ C 

p , from a measurement matrix, A ∈ C 

n ×p , and observed vector 

y ∈ C 

n such that y = Ax , where n � p . In a noisy setting, the prob- 

lem is formulated as y = Ax + e , where e is a vector of measure- 

ment noise with a bounded variance, i.e., ‖ e ‖ 2 ≤ ε. Without loss of 
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generality, it is assumed that A is full-rank; otherwise, the obser- 

vations would be redundant. 

Finding the sparsest solution amounts to solving the following 

optimization problem: 

x 

∗ = argmin { ‖ x ‖ 0 : Ax = y } , (1) 

where ‖ x ‖ 0 denotes the � 0 -measure of vector x , i.e., the number 

of non-zero elements of x . Observe that � 0 is not a proper norm 

and that is why we refer to it as a “measure” although, by abuse 

of notation, we may also write � 0 -norm. Unfortunately, (1) is in 

general an NP-hard combinatorial problem since it involves finding 

the number and positions of the zeros in a p -dimensional space 

[8] . The field of compressive sensing (CS) addresses this problem 

by solving the under-determined system with a unique sparsest 

solution under specific conditions on the system. The � 0 -norm ob- 

jective in (1) can be relaxed to the � 1 -norm, solving the following 

convex optimization problem: ̂ x 1 = argmin { ‖ x ‖ 1 : Ax = y } . (2) 

This convex relaxation makes the problem more tractable; how- 

ever, in general, the solutions of (1) and (2) are not equivalent. CS 

theory has shown that, if A satisfies the null space property (NSP) 

or the restricted isometry property (RIP), then the � 1 problem 

yields the optimal � 0 solution [8] . Unfortunately, these conditions 
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are not verifiable in practice. In particular, one cannot check if the 

obtained � 1 -solution is the sparsest solution or not! Through ex- 

amples and simulations, we show that, in general, the � 1 -solution 

may be far from the � 0 -optimal solution. Hence, it is crucial to de- 

velop greedy algorithms that achieve a balance between computa- 

tional complexity and reconstruction error. 

2. Related work 

Recent effort s f ocused on greedy algorithms to infer a sparse 

solution. In particular, a family of Hard Thresholding (HT) algo- 

rithms have been suggested in [9] , which makes an initial guess 

for the support of x and then projects the measurements y onto 

this support. An iterative version called Iterative Hard Thresholding 

(IHT) updates the residual and estimates a new x at every iteration 

until the stopping criterion is satisfied. Another version of lower 

complexity per iteration, called Matching Pursuit (MP), has been 

suggested. The Orthogonal Matching Pursuit (OMP) [10] is an iter- 

ative greedy algorithm that selects at each step the column which 

is most correlated with the current residuals, and estimates the 

nonzero entries in the vector x with a computational complex- 

ity O( k log p ). OMP’s computational improvements, however, come 

at the cost of increased reconstruction error. Compressive Sampling 

Matching Pursuit (CoSaMP) [10] combines the approaches of OMP 

and HT in a two-stage greedy algorithm that aims to improve the 

reconstruction error of OMP. Unfortunately, these methods sacrifice 

accuracy of the reconstruction for the runtime as they approximate 

the � 0 -norm by other cost functions. Recently, SL0, or smoothed � 0 , 

has been proposed as a fast algorithm to directly approximate the 

� 0 solution [11] . Candés et al. [5] proposed an iterative re-weighted 

� 1 minimization algorithm that has theoretical guarantees that is 

can improve the � 1 solution [12] . 

In our previous work, we presented Kernel RecONstruction 

(KRON), a greedy algorithm, that achieves an exact solution to (1) , 

without exhaustively searching C 

p [13] . In KRON, finding the spars- 

est solution amounts to solving 
(

p 
s = p−n 

)
linear equations. All 

(
p 
s 

)
po- 

tential solutions have at least s zeros. The sparsest solution is guar- 

anteed to be one of them. The computational complexity of KRON 

is O(p s ) . KRON yields the optimal sparsest solution (zero recon- 

struction error) at a high computational cost. 

Against this background, we seek to develop an approach for 

approximating (1) yielding reconstruction errors lower than � 1 - 

norm, and other approaches such as OMP and CoSaMP, and at the 

same time having comparable, or at least controllable, computa- 

tional cost. 

3. Approximate Kernel Reconstruction 

3.1. Central idea behind AKRON 

In this section, we motivate the central idea behind AKRON, 

given general linear algebra knowledge about the under- 

determined system. First, we know that the system Ax = y 

always admits solutions with s = (p − n ) zeros because s is the 

dimension of the Kernel of A ; hence the name Kernel RecON- 

struction (KRON) in [13] . KRON distributes s zeros among the 

p entries then searches for all the solutions with exactly s ze- 

ros. The sparsest solution is guaranteed to be among these 
(

p 
s 

)
solutions. However, we do not know in advance which one it 

will be. KRON tries all possible 
(

p 
s 

)
solutions then chooses the 

sparsest. Notice that no conditions are imposed on the matrix A ; 

that is, KRON recovers the optimal sparsest solution whether the 

RIP condition is satisfied or not. The central issue with KRON is 

that it becomes computationally prohibitive when p is large and 

s in the order of p 
2 . Therefore, we propose AKRON to reduce the 

number of enumerations that need to be performed in KRON. To 

achieve this, the central idea behind AKRON is to use the standard 

� 1 -approximation to “guess” the locations of the s zeros that will 

result in the sparsest solution. Finding s correct zero locations is 

sufficient to find the optimal sparsest solution. This idea can also 

be viewed as a “perturbation” of the � 1 -approximation to make it 

closer to the � 0 -norm . Formally, we define a δ-neighborhood of the 

� 1 -approximation that allows AKRON to find sparser solutions and 

reduce the reconstruction error. The size of the neighborhood is 

tunable depending on the computational power available, and vary 

from 0 ( � 1 -approximation) to n (KRON, i.e., perfect reconstruction). 

In particular, when the � 1 -approximation is optimal (RIP condi- 

tions satisfied), AKRON is also optimal, but when the � 1 -solution is 

suboptimal, AKRON results in a better (i.e., sparser) solution with 

smaller recovery error. 

3.2. The noiseless case 

AKRON begins by solving the � 1 convex optimization problem 

in (2) . Denote the solution by ̂ x 1 . In general, ̂ x 1 is different from 

the desired � 0 -solution. However, since � 1 is the closest convex 

norm to � 0 , we can use ̂  x 1 to find the locations of s zeros, which 

would correspond to the s -smallest magnitudes in ̂

 x 1 . The central 

idea behind AKRON’s 0-neighborhood solution is as follows: (1) 

find the indices ( Q ) with the s -smallest magnitudes of the � 1 so- 

lution, (2) set these indices to zero, then (3) re-solve the system 

Ax = y . Call this solution 

̂ x ∗
δ=0 

. The following proposition bounds 

the error between the � 1 -solution and the (δ = 0) -neighborhood 

solution ̂

 x ∗
δ=0 

. 

Proposition 1. Let ̂  x 1 denote the � 1 -solution of the under-determined 

problem in (2) . Without loss of generality, we assume that A ∈ C 

n ×p 

is full-rank, and call s = p − n . Let { | ̂  x 1 (i 1 ) | , . . . , | ̂  x 1 (i s ) | } be the set 

of the s-smallest magnitudes of ̂  x 1 . Then, we have 

‖ ̂

 x 1 −̂ x 

∗
δ=0 ‖ 2 ≤

√ 

s C A max { | ̂  x 1 (i 1 ) | , · · · , | ̂  x 1 (i s ) | } , (3) 

where C A is a constant that depends only on the matrix A : C A = (1 + 

‖ A 

−1 
Q 

‖ 2 ‖ A Q ⊥ ‖ 2 ) , where A Q is the ( n × n ) sub-matrix of A obtained 

by removing the s columns indexed by { i 1 , ���, i s }, and A Q ⊥ ∈ C 

n ×s is 

the complement matrix, i.e., the matrix that contains only the columns 

corresponding to these s-smallest elements. 

Proof. Denote by A Q ∈ C 

n ×n the reduced matrix, where the 

columns corresponding to the indices of the s -smallest elements 

in ̂

 x 1 were removed. Notice that A Q is invertible because A is full- 

rank. Let A Q ⊥ ∈ C 

n ×s be the complement matrix, i.e., the matrix 

that contains only the columns corresponding to the s -smallest el- 

ements { i 1 , ���, i s }. We adopt similar notations for ̂  x 1 Q ∈ C 

n ×1 and ̂ x 1 
Q ⊥ 

∈ C 

s ×1 . We have 

A ̂

 x 1 = A ̂

 x 

∗
δ=0 = y (4) 

⇐⇒ 

A Q ̂  x 1 Q + A Q ⊥ ̂  x 1 Q ⊥ = A ̂

 x 

∗
δ=0 . (5) 

Observe that since, by construction, ̂  x ∗
δ=0 

Q ⊥ 
= 0 , we have that 

A Q ̂  x 

∗
δ=0 Q 

= A ̂

 x 

∗
δ=0 . (6) 

From Eqs. (5) and (6) , we have 

A Q ( ̂  x 

∗
δ=0 Q 

−̂ x 1 Q ) = A Q ⊥ ˆ x 1 Q ⊥ . 

Therefore, ̂ x 

∗
δ=0 Q 

−̂ x 1 Q = A 

−1 
Q A Q ⊥ ̂ x 1 Q ⊥ . 

Using norm inequalities, we obtain 

‖ ̂

 x 

∗
δ=0 Q 

−̂ x 1 Q ‖ 2 ≤ ‖ A 

−1 
Q ‖ 2 ‖ A Q ⊥ ‖ 2 ‖ ̂

 x 1 Q ⊥ ‖ 2 . (7) 
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