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Exact reconstruction of a sparse signal for an under-determined linear system using the ¢y-measure is,
in general, an NP-hard problem. The most popular approach is to relax the ¢y-optimization problem to
an ¢;-approximation. However, the strength of this convex approximation relies upon rigid properties on
the system, which are not verifiable in practice. Greedy algorithms have been proposed in the past to
speed up the optimization of the ¢; problem, but their computational efficiency comes at the expense of
a larger error. In an effort to control error and complexity, this paper goes beyond the ¢;-approximation
by growing neighborhoods of the ¢;-solution that moves towards the optimal solution. The size of the
neighborhood is tunable depending on the computational resources. The proposed algorithm, termed Ap-
proximate Kernel RecONstruction (AKRON), yields significantly smaller errors than current greedy meth-
ods with a controllable computational cost. By construction, the error of AKRON is smaller than or to
equal the ¢;-solution. AKRON enjoys all the error bounds of ¢; under the restricted isometry property
condition. We benchmarked AKRON on simulated data from several under-determined systems, and the
results show that AKRON can significantly improve the reconstruction error with slightly more computa-
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tional cost than solving the ¢; problem directly.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

Many engineering problems are formulated as inverse prob-
lems, which is where the number of parameters (p) greatly ex-
ceeds the number of measurements (n) available. Examples in-
clude: source estimation of electroencephalographic (EEG) and
magnetoencephalographic (MEG) data [1,2], reverse-engineering of
genetic regulatory networks from high-throughput gene expression
data [3,4], magnetic resonance imaging [5], information theory and
communication engineering [6], and electromagnetics and antenna
design [7]. These inverse problems, known as “large p small n”,
pose a challenge, because of the non-identifiability of a solution.
Additional constraints or prior knowledge are needed to solve such
under-determined systems. In many cases, such as inference of ge-
netic regulatory networks [3,4], we are interested in the spars-
est solution. The objective is then to recover the sparsest signal,
X € CP, from a measurement matrix, A € C"*P, and observed vector
y € C" such that y = Ax, where n < p. In a noisy setting, the prob-
lem is formulated as y = AX + e, where e is a vector of measure-
ment noise with a bounded variance, i.e., ||e|, < €. Without loss of
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generality, it is assumed that A is full-rank; otherwise, the obser-
vations would be redundant.

Finding the sparsest solution amounts to solving the following
optimization problem:

x* = argmin{|x]lo : Ax = y}, (1)

where ||x||o denotes the ¢p-measure of vector X, i.e., the number
of non-zero elements of x. Observe that ¢y is not a proper norm
and that is why we refer to it as a “measure” although, by abuse
of notation, we may also write ¢g-norm. Unfortunately, (1) is in
general an NP-hard combinatorial problem since it involves finding
the number and positions of the zeros in a p-dimensional space
[8]. The field of compressive sensing (CS) addresses this problem
by solving the under-determined system with a unique sparsest
solution under specific conditions on the system. The ¢y-norm ob-
jective in (1) can be relaxed to the ¢;-norm, solving the following
convex optimization problem:

%, = argmin(||x|; : Ax = y}. (2)

This convex relaxation makes the problem more tractable; how-
ever, in general, the solutions of (1) and (2) are not equivalent. CS
theory has shown that, if A satisfies the null space property (NSP)
or the restricted isometry property (RIP), then the ¢; problem
yields the optimal ¢; solution [8]. Unfortunately, these conditions
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are not verifiable in practice. In particular, one cannot check if the
obtained ¢-solution is the sparsest solution or not! Through ex-
amples and simulations, we show that, in general, the ¢;-solution
may be far from the ¢y-optimal solution. Hence, it is crucial to de-
velop greedy algorithms that achieve a balance between computa-
tional complexity and reconstruction error.

2. Related work

Recent efforts focused on greedy algorithms to infer a sparse
solution. In particular, a family of Hard Thresholding (HT) algo-
rithms have been suggested in [9], which makes an initial guess
for the support of x and then projects the measurements y onto
this support. An iterative version called Iterative Hard Thresholding
(IHT) updates the residual and estimates a new X at every iteration
until the stopping criterion is satisfied. Another version of lower
complexity per iteration, called Matching Pursuit (MP), has been
suggested. The Orthogonal Matching Pursuit (OMP) [10] is an iter-
ative greedy algorithm that selects at each step the column which
is most correlated with the current residuals, and estimates the
nonzero entries in the vector x with a computational complex-
ity O(klogp). OMP’s computational improvements, however, come
at the cost of increased reconstruction error. Compressive Sampling
Matching Pursuit (CoSaMP) [10] combines the approaches of OMP
and HT in a two-stage greedy algorithm that aims to improve the
reconstruction error of OMP. Unfortunately, these methods sacrifice
accuracy of the reconstruction for the runtime as they approximate
the ¢p-norm by other cost functions. Recently, SLO, or smoothed ¢,
has been proposed as a fast algorithm to directly approximate the
£q solution [11]. Candés et al. [5] proposed an iterative re-weighted
¢q minimization algorithm that has theoretical guarantees that is
can improve the ¢; solution [12].

In our previous work, we presented Kernel RecONstruction
(KRON), a greedy algorithm, that achieves an exact solution to (1),
without exhaustively searching CP [13]. In KRON, finding the spars-
est solution amounts to solving (5=57n) linear equations. All (?) po-
tential solutions have at least s zeros. The sparsest solution is guar-
anteed to be one of them. The computational complexity of KRON
is O(p®). KRON vyields the optimal sparsest solution (zero recon-
struction error) at a high computational cost.

Against this background, we seek to develop an approach for
approximating (1) yielding reconstruction errors lower than ¢;-
norm, and other approaches such as OMP and CoSaMP, and at the
same time having comparable, or at least controllable, computa-
tional cost.

3. Approximate Kernel Reconstruction
3.1. Central idea behind AKRON

In this section, we motivate the central idea behind AKRON,
given general linear algebra knowledge about the under-
determined system. First, we know that the system Ax=y
always admits solutions with s = (p —n) zeros because s is the
dimension of the Kernel of A; hence the name Kernel RecON-
struction (KRON) in [13]. KRON distributes s zeros among the
p entries then searches for all the solutions with exactly s ze-
ros. The sparsest solution is guaranteed to be among these (’5’)
solutions. However, we do not know in advance which one it
will be. KRON tries all possible (‘S’) solutions then chooses the
sparsest. Notice that no conditions are imposed on the matrix A;
that is, KRON recovers the optimal sparsest solution whether the
RIP condition is satisfied or not. The central issue with KRON is
that it becomes computationally prohibitive when p is large and
s in the order of g. Therefore, we propose AKRON to reduce the
number of enumerations that need to be performed in KRON. To

achieve this, the central idea behind AKRON is to use the standard
¢q-approximation to “guess” the locations of the s zeros that will
result in the sparsest solution. Finding s correct zero locations is
sufficient to find the optimal sparsest solution. This idea can also
be viewed as a “perturbation” of the ¢;-approximation to make it
closer to the ¢g-norm. Formally, we define a §-neighborhood of the
£q-approximation that allows AKRON to find sparser solutions and
reduce the reconstruction error. The size of the neighborhood is
tunable depending on the computational power available, and vary
from O (¢;-approximation) to n (KRON, i.e., perfect reconstruction).
In particular, when the ¢;-approximation is optimal (RIP condi-
tions satisfied), AKRON is also optimal, but when the ¢;-solution is
suboptimal, AKRON results in a better (i.e., sparser) solution with
smaller recovery error.

3.2. The noiseless case

AKRON begins by solving the ¢; convex optimization problem
in (2). Denote the solution by X;. In general, X; is different from
the desired ¢g-solution. However, since ¢; is the closest convex
norm to ¢, we can use X; to find the locations of s zeros, which
would correspond to the s-smallest magnitudes in X;. The central
idea behind AKRON’s 0-neighborhood solution is as follows: (1)
find the indices (Q) with the s-smallest magnitudes of the ¢; so-
lution, (2) set these indices to zero, then (3) re-solve the system
Ax =y. Call this solution igzo. The following proposition bounds
the error between the ¢;-solution and the (§ = 0)-neighborhood
solution X;_,.

Proposition 1. Let X; denote the ¢;-solution of the under-determined
problem in (2). Without loss of generality, we assume that A € C"*P
is full-rank, and call s =p—n. Let {|X;(i1)|, ..., |X;(is)|} be the set
of the s-smallest magnitudes of X;. Then, we have

s X @i, (3)

where C4 is a constant that depends only on the matrix A: C4 = (1 +
||A61||2||AQL l2), where Aq is the (nxn) sub-matrix of A obtained
by removing the s columns indexed by {iy, -+, is}, and Ag. € C™* is
the complement matrix, i.e., the matrix that contains only the columns
corresponding to these s-smallest elements.

X1 —X;_oll2 < +/s Camax {|X; (i1)

Proof. Denote by Ay € C™" the reduced matrix, where the
columns corresponding to the indices of the s-smallest elements
in X; were removed. Notice that Ay is invertible because A is full-
rank. Let Ap. € C™ be the complement matrix, ie., the matrix
that contains only the columns corresponding to the s-smallest el-
ements {iy, ---, is}. We adopt similar notations for i1Q e C™1 and

X; . € C1. We have
QL

Ai1 = Aigzo =Yy (4)

—
AQ’X\]Q-{—AQL’X\]QL = Aigzo. (5)

Observe that since, by construction, ig_o L= 0, we have that
=“o

~ —
AoX;_, = AX5_g (6)
From Eqs. (5) and (6), we have
AQ(,)Z§=0Q —/)z1Q) = AQL )A(]Qi .
Therefore,
X\E:OQ —5(\10 = AalAQL iqu .
Using norm inequalities, we obtain

%50, — X1, ll2 < 1AG 12 11Ag- 12 X, [l2- (7)
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