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a b s t r a c t

Population Monte Carlo (PMC) sampling methods are powerful tools for approximating distributions of
static unknowns given a set of observations. These methods are iterative in nature: at each step they
generate samples from a proposal distribution and assign them weights according to the importance
sampling principle. Critical issues in applying PMC methods are the choice of the generating functions for
the samples and the avoidance of the sample degeneracy. In this paper, we propose three new schemes
that considerably improve the performance of the original PMC formulation by allowing for better ex-
ploration of the space of unknowns and by selecting more adequately the surviving samples. A theo-
retical analysis is performed, proving the superiority of the novel schemes in terms of variance of the
associated estimators and preservation of the sample diversity. Furthermore, we show that they out-
perform other state of the art algorithms (both in terms of mean square error and robustness w.r.t.
initialization) through extensive numerical simulations.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Bayesian signal processing, which has become very popular over
the last years in statistical signal processing, requires computing
distributions of unknowns conditioned on observations (and mo-
ments of them). Unfortunately, these distributions are often im-
possible to obtain analytically in many real-world challenging pro-
blems. An alternative is then to resort to Monte Carlo (MC) methods,
which approximate the target distributions with random measures
composed of samples and associated weights [1].

A well-known class of MC methods are those based on the
adaptive importance sampling (AIS) mechanism, such as Popula-
tion Monte Carlo (PMC) algorithms [2,3], which have been used in
missing data, tracking, biological applications, among others [4–8].
In these methods, a population of probability density functions
(pdfs) is adapted for approximating a target distribution through
an iterative importance sampling procedure. AIS is often preferred
to other MC schemes, such as Markov Chain Monte Carlo (MCMC),
since they present several advantages. On the one hand, all the
generated samples are employed in the estimation (e.g., there is no
“burn-in” period). On the other hand, the corresponding adaptive
schemes are more flexible, since they present fewer theoretical

issues than adaptive MCMC algorithms. Namely, the convergence
of AIS methods can usually be guaranteed under mild assumptions
regarding the tails of the distributions and the stability of the
adaptive process, whereas adaptive MCMC schemes must be de-
signed very carefully, since the adaptation procedure can easily
jeopardize the ergodicity of the chain (e.g., see [9] or [1, Section
7.6.3]).

The most characteristic feature in PMC [3] is arguably the use of
resampling procedures for adapting the proposal pdfs (see for
instance [10] for a review of resampling methods in particle fil-
tering). The resampling step is a fast, often dimensionality-free,
and an easy way of adapting the proposal pdfs by using informa-
tion about the target. However, resampling schemes present some
important drawbacks, such as the sample impoverishment. At the
resampling step, the proposal pdfs with poor performance (i.e.,
with low associated weights) are likely to be removed, thus
yielding a reduction of diversity. Since the publication of the
standard PMC [3], several variants have been considered, partly in
an attempt to mitigate this issue. In the D-kernel algorithm [11,12],
the PMC kernel is a mixture of different kernels and the weights of
the mixture are iteratively adapted in an implicit expectation-
maximization (EM) algorithm. This procedure is refined through a
double Rao–Blackwelization in [13]. The mixture population
Monte Carlo algorithm (M-PMC) proposed in [14] also adapts a
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mixture of proposal pdfs (weights and parameters of the kernels).
The M-PMC belongs to the family of AIS methods, since it itera-
tively draws the samples from the mixture that is updated at every
iteration without an explicit resampling step. Since drawing from
the mixture can be interpreted as an implicit multinomial re-
sampling, this method retains some similarities with the standard
PMC scheme. A nonlinear transformation of the importance
weights in the PMC framework has also been proposed in [15].
Other sophisticated AIS schemes, such as the AMIS [16] and the
APIS [17] algorithms, have been recently proposed in the literature.

In this paper, we study three novel PMC schemes that improve
the performance of standard PMC approach by allowing a better
exploration of the space of unknowns and by reducing the var-
iance of the estimators. These alternatives can be applied within
some other sophisticated AIS approaches as well, such as the SMC
samplers [18]. For this reason, we mainly compare them with the
standard PMC [3], since the novel schemes could be automatically
combined with the more sophisticated AIS techniques.

First of all, we introduce an alternative form of the importance
weights, using a mixture of the proposal pdfs in the denominator of
the weight ratio. We provide an exhaustive theoretical analysis,
proving the unbiasedness and consistency of the resulting estimator,
and showing the reduction in the variance of the estimator w.r.t. the
estimator obtained using the standard weights. We also prove that the
use of this mixture decreases the averaged mismatch between the
numerator (target) and the function in the denominator of the IS
weight in terms of L2 distance. Moreover, we test this alternative
scheme in different numerical simulations, including an illustrative toy
example in Section 5.1, showing its practical benefit.

In the second proposed scheme, we generate several samples
from every proposal pdf (not only one, as in PMC) and then we
resample them jointly (all the samples at once, keeping fixed the
total number of proposal pdfs). In the third proposed scheme, we
consider again the generation of several samples from every pro-
posal pdf, but the resampling is performed separately on the set of
samples coming from each proposal, therefore guaranteeing that
there will be exactly one representative from each of the in-
dividual mixture components in the random measure.

We show, through extensive computer simulations in several
different scenarios, that the three newly proposed variants provide a
substantial improvement compared to the standard PMC. In addition,
we test the proposed variants on a standard implementation of the
SMC samplers [18], showing also an improvement of the perfor-
mance. On the one hand, they yield unbiased estimators with a re-
duced variance, as also proved theoretically. On the other hand, they
outperform the standard PMC in terms of preservation of sample
diversity and robustness w.r.t. initialization and parameter choice.

2. Problem statement

Let us consider the variable of interest, ∈ x Dx, and let ∈ y Dy

be the observed data. In a Bayesian framework, the posterior
probability density function (pdf), here referred to as target, con-
tains all the information about the parameters of interest and is
defined as
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where ℓ( | )y x is the likelihood function, ( )p x0 is the prior pdf, and
( )Z y is the model evidence or partition function (useful in model

selection).1 The goal is to compute some moment of x, i.e., an

integral measure w.r.t. the target pdf,
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where f can be any square integrable function of x w.r.t. π ( )x , and
∫ π= ( )Z dx x .2

In many practical applications, both the integral (2) and Z
cannot be obtained in closed form and must be approximated.
Importance sampling methods allow for the approximation of
both quantities by a set of properly weighted samples.

3. Population Monte Carlo (PMC)

3.1. Description of the original PMC algorithm

The PMC method [3] is a well-known iterative adaptive im-
portance sampling technique. At each iteration it generates a set of
N samples { }( )

=xi
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1, where t denotes the iteration number and i
denotes the sample index. In order to obtain the samples, the
original PMC algorithm makes use of a collection of proposal
densities { ( )}( )
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weight of a particular sample represents the ratio between the
evaluation, at the sample value, of the target distribution and the
evaluation at the sample value of the proposal used to generate it.
The method proceeds iteratively (up to the maximum iteration
step considered, T), building a global importance sampling esti-
mator using different proposals at every iteration. The new pro-
posals are obtained by updating the set of proposals in the pre-
vious iteration.

There are two key issues in the application of PMC methods:
the adaptation of the proposals from iteration to iteration and the
way resampling is applied. The latter is critical to avoid the de-
generacy of the random measure, i.e., to avoid a few particles
having extremely large weights and the rest negligible ones [1,19].
Through the resampling procedure one selects the most promising
streams of samples from the first iteration up to the current one.
Several resampling procedures have been proposed in the litera-
ture [20,21]. In the standard PMC [3], multinomial resampling is
the method of choice, and consists of sampling N times from the
discrete probability mass defined by the normalized weights. As a
result of this procedure, the new set of parameters used to adapt
the proposals for the generation of samples in the next iteration is
selected. In summary, the standard PMC technique consists of the
steps shown in Table 1.

3.2. Estimators and consistency

All the generated samples can be used to build a global ap-
proximation of the target. This can be done by first normalizing all
the weights from all the iterations,
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and then providing the pairs ρ{ ¯ }( ) ( )x ,i
t

i
t for = …i N1, , and

= …t T1, , . This procedure to compute the weights is equivalent to
applying a static importance sampling technique that considers NT
different proposal pdfs and all the corresponding samples. If the

1 From now on, we remove the dependence on y in order to simplify the
notation.

2 Let us recall that ( )f x is square integrable w.r.t. π ( )x if ( ) ∈ πf Lx 2, i.e., if
∫ π( ) ( ) < ∞f dx x x2 .
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