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a b s t r a c t

The standard Capon beamformer is subject to substantial performance degradation in the presence of
estimation errors of the signal steering vector and the array covariance matrix. In order to address this
problem, robust adaptive beamformers (RABs) have been designed. In this study, we propose a novel RAB
from the perspective of the beamformer sensitivity. In particular, we consider the general form of the
beamformer sensitivity, implying that the random errors may be not white noise but correlated. Then we
suggest to use the inverse of the array sample covariance matrix as the random error covariance. Using
this, we propose to compute the Capon beamformer with minimum sensitivity to correlated random
errors, considering a Euclidean ball as the uncertainty set for the signal steering vector. Moreover, the
Lagrange multiplier methodology can be employed to solve the proposed optimization problem. Nu-
merical results demonstrate the superior performance of the proposed beamformer in the presence of
large mismatch relative to other existing approaches such as ‘diagonal loading’, ‘robust Capon’ and
‘maximally robust Capon’ beamformers.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Capon beamformer is a representative example of adaptive
array beamformer which intends to allow the signal of interest
(SOI) to pass through without any distortionwhile the interference
signals and noise are suppressed as much as possible, thereby
maximizing the output signal-to-interference-plus-noise ratio
(SINR). The standard Capon beamformer (SCB) can be formulated
as
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where a denotes the nominal SOI steering vector. The immaterial
scalar β = −

a R a
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H 1 does not affect the array output SINR. The esti-

mated covariance matrix R can be formed by
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denote the array observations or snapshots.

Performing eigen-decomposition on R yields
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where N is the array sensor number. The matrix = …⎡⎣ ⎤⎦U u u, , N1

collects all the eigenvectors, and Γ γ γ= { … }diag , , N1 is a diagonal
matrix with the eigenvalues γ γ≥ ⋯ ≥ N1 being nonincreasingly
ordered. By incorporating knowledge of the white noise variance
s2n, we can obtain the maximum likelihood estimation with a noise
floor constraint [1]

{ }∑ γ σ=
( )

̂
=

R u umax , .
5i

N

i n i i
H

ML
1

2

It has been pointed out that the SCB may suffer from sub-
stantial performance degradations even for small mismatch be-
tween the presumed a (or R) and its actual value a0 (or R) [2–5].
This is because in such situation the SOI may be treated as an
interference signal and therefore be suppressed erroneously,
which is commonly referred to as signal self-nulling [10]. In order
to address this problem, some robust adaptive beamformers
(RABs) have been designed which aim to provide acceptable per-
formance even when the nominal steering vector and covariance
matrix depart from their actual values. An excellent review and
comparison of the existing robust techniques have been provided
in [11,12]; see also the references contained therein.
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The most popular RAB technique is the diagonal loading (DL)
method [2] along with its generalized versions [3–5]. The con-
ventional DL beamformer can be formulated as

ξ+ = ( )w Rw w w w amin s. t. 1. 6
H H H

w

The optimum solution of (6) is given by

( )β ξ= + ( )
−

w R I a 7DL DL
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where I denotes the identity matrix with appropriate size and the
scaling factor

( )
β =
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H 1 is also immaterial. We can see that

the DL method in (6) differs from the SCB of (1) in that an addi-
tional term ξw wH is used, which can be explained by the fol-
lowing fact. When the signal self-nulling occurs, we have ≈w a 0H

0

(where a0 stands for the true steering vector of the SOI) and si-
multaneously we also have =w a 1H due to the distortionless
constraint on the nominal SOI. Consequently, we can obtain the
approximation expression ( − ) ≈w a a 1H

0 . However, the nominal
and actual steering vectors are often close and hence ∥ − ∥a a0 is
relatively small, where the notation ∥·∥ represents the Euclidean
norm. This implies that the relation ( − ) ≈w a a 1H

0 holds only if
∥ ∥w is large [13]. Therefore, we use the term ξw wH in (6) to
prevent the norm of the weight vector to become large and in turn
avoid signal self-cancellation. In the traditional DL method [2], the
loading factor ξ is set in an ad hoc way, typically ξ σ= 10 n

2 where sn
denotes the noise power.

The generalized versions of DL [3–5] specifically attempt to
establish the relationship between the loading factor and the
steering vector uncertainty level. For example, in the RAB pre-
sented in [3] it is assumed that the true SOI steering vector be-
longs to the uncertainty set

ε ε( ) ≜ { ∥ − ∥ ≤ } ( )a a a 8

where ε is the pre-selected upper bound on the norm of the
steering vector mismatch. Then the RAB in [3] maintains a gain no
less than unity within the uncertainty set, while minimizing the
output power. That is
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Moreover, it is found that the least gain within the uncertainty set,
which corresponds to the worst-case steering vector, has the fol-
lowing form [3]:
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As a consequence, the problem in (9) can be rewritten in the
convex second order cone programming form and be solved effi-
ciently using the interior point method. It is also shown that this
RAB technique based on worst-case performance optimization
belongs to the diagonal loading approaches. Also, in [4] it is shown
that the RABs proposed in [3–5] are equivalent and the essence of
them is to replace the nominal SOI steering vector by the vector
from the presumed uncertainty set, which results in the maximum
output power.

Recently, a novel RAB has been considered in [10] from the
perspective of the beamformer sensitivity which is defined as
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From (10), we observe that the largest deviation of the array gain
within the uncertainty set is ε ∥ ∥w . Therefore, the beamformer
sensitivity measures the relative deviation in array response
(which is normalized by the uncertainty level ε). Then, the

beamforming problem in [10] is formulated as
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The basic idea of (12) is to find the vector within the uncertainty
set which achieves the minimum beamformer sensitivity. As will
be shown subsequently, the assumption of uncorrelated random
errors is used implicitly in [10]. In other words, the signals are
assumed to be perturbed by the white noise. However, this white
noise assumption is not always satisfied [6].

In this paper, we suggest a robust adaptive beamforming which
is also based on the beamformer sensitivity. Here we treat a more
general case in which the signals are perturbed by correlated
random errors. Then we find that it is reasonable to use the in-
version of the sample covariance matrix as the random error
covariance. We consider a beamformer optimization problem
which intends to obtain the minimum beamformer sensitivity to
the correlated random errors. Such optimization problem can be
solved by the Lagrange multiplier methodology.

2. Proposed robust beamformer

In [2], a general definition of the beamformer sensitivity is gi-
ven by

≜
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where the matrix E denotes the covariance of the random errors. It
is pointed out in [2] that −Tg se is a classic measure of sensitivity to
tolerance errors. When the errors are uncorrelated, the covariance
becomes the identity matrix and thus the above definition reduces
to that in (11). However, this white noise assumption is not always
valid. If we take the general form into account, the problem that
may arise is the choice of the error covariance matrix. As pointed
out in [7,8], a strong priori on the shape of the random errors is
seldom the case in practice and the robustness may be endangered
if an imprecise covariance matrix is used. In this paper, we suggest

to use the inverse of the sample covariance matrix, i.e.,
−

R
1
, to

replace the matrix E in (13), implying that the random errors are
assumed to be more related to the subdominant eigenvectors of R
than to the dominant eigenvectors. Thus the optimization problem
considered in this paper takes the following form:
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The reason of the choice of
−

R
1
can also be explained by the fol-

lowing facts.
Let us first rewrite the DL weight vector in (7) as

( ) ∑β ξ β
γ ξ

= + =
+ ( )̂

−

=

w R I a
u a

u .
15i

N
i
H

i
iDL DL

1
DL

1

From (15), we observe that for large eigenvalues the term
γ ξ+

1

i
is

almost unchanged whether ξ is loaded or not. However, for small
eigenvalues the term

γ ξ+
1

i
reduces significantly once a positive
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