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a b s t r a c t

We present a computationally efficient method to generate random variables from a univariate condi-
tional probability density function (PDF) derived from a multivariate α-sub-Gaussian (αSG) distribution.
The approach may be used to sequentially generate variates for sliding-window models that constrain
immediately adjacent samples to be αSG random vectors. We initially derive and establish various
properties of the conditional PDF and show it to be equivalent to a Student's t-distribution in an
asymptotic sense. As the αSG PDF does not exist in closed form, we use these insights to develop
a method based on the rejection sampling (accept-reject) algorithm that allows generating random
variates with computational ease.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

The heavy-tailed stable distribution has been extensively used
in the literature to model impulsive data [11,6,15]. Heavy-tailed
distributions assign non-negligible probabilities to outliers and
therefore offer good fits to amplitude distributions of impulsive
datasets [11]. The motivation for employing stable models stems
from the generalized central limit theorem (GCLT) [21], which
states that the sum of independent and identically distributed
(IID) random variables (vectors) converges to a stable distribution
as the number of elements in the sum approaches infinity [15,21].
The GCLT is in fact the central limit theorem (CLT) but with the
power constraint removed. The last statement essentially implies
that the well-known Gaussian distribution is part of the stable
family. Moreover, it is the only member to have light (exponential)
tails [15,21]. As the validity of Gaussian models is primarily at-
tributed to the CLT [17], the GCLT offers a similar argument for
heavy-tailed stable models when the process is impulsive in nat-
ure [11,15]. From an engineering perspective, there are a number
of practical scenarios where the ambient noise process is known to
be impulsive. The warm shallow underwater channel, powerlines
and interference-prone wireless networks are a few examples
where such noise is prevalent [6,23].

In the literature, impulsive noise processes are typically
assumed to be white, i.e., the samples are symmetric IID random
variables [6,5,2]. Though such assumptions offer mathematical
tractability in terms of developing optimized routines, they are far
from realistic [3,10,7,4]. In practice, noise is seldom white and
therefore has memory. Thus, at any given time, the current noise
sample depends on a number of previous samples. To incorporate
this dependence within the noise framework, several models have
been proposed in the literature [3,10,7,6]. Recently, the stationary
α-sub-Gaussian noise with memory order m (αSGN(m)) process was
proposed to model the ambient noise in warm shallow under-
water environments [7]. As highlighted by its name, the αSGN
(m) model is based on the α-sub-Gaussian (αSG) distribution,
which is a subclass of the stable family with the added char-
acteristic of being symmetric and elliptical as well [14]. The new
model is particularly adept in tracking the dependence between
samples of the noise process whilst constraining the amplitude
distribution to be that of a symmetric α-stable (SαS) random
variable and is shown to outperform contemporary colored and
white models in this regard.

Generating random variates is an important component of
simulation-based performance analysis of systems, schemes and
algorithms. The αSGN(m) model is based on a sliding-window
type framework and constrains samples within the window to be
αSG [7]. Therefore, a noise sample is returned from a univariate
conditional distribution of a multivariate αSG distribution. As
shown later, this is a computationally demanding task, especially
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when a large number of variates are required. However, by ex-
pressing the conditional density in a suitable form and taking
advantage of its properties, it is possible to compute realizations in
a less time-consuming manner.

The primary contribution of this paper is to offer a way to ef-
ficiently generate realizations for αSG processes that are based on a
sliding-window framework. The αSGN(m) model falls within this
category. Generating independent outcomes from multivariate αSG
distributions is a straightforward task and may be accomplished
with computational ease [9,14]. However, extending this efficiency
to processes with memory is not trivial. To accomplish this, we
investigate the properties of a univariate conditional distribution
derived from a (general) multivariate αSG probability density
function (PDF). We show that this converges to a Student's t-dis-
tribution in an asymptotic sense and express the latter's para-
meters in terms of the formers. These properties are then exploi-
ted to find suitable majorizing functions which are used to effi-
ciently generate random variates by employing the established
rejection sampling (accept-reject) method [19]. Further still, the
general αSG PDF cannot be expressed in closed-form [14]. For
every instance of its argument, the PDF is evaluated by numeri-
cally integrating over a heavy-tailed function [11,14]. The same
holds true for its corresponding conditional PDFs. We investigate
the underlying function and show that it can be evaluated by a
one-time tabulation and interpolation over a certain range, after
which limiting expressions may be applied. Employing this routine
in conjunction with the optimized setting of the rejection sam-
pling algorithm substantially reduces the time taken for generat-
ing the realizations. It takes approximately a second to sequen-
tially generate 10,000 samples of αSGN(m) on a 3.70 GHz
processor.

This paper is organized as follows: in Section 2, we briefly
summarize stable, SαS and multivariate αSG distributions. We
then derive the univariate conditional density for the latter and
comment on its properties in Section 3. Using these insights, we
discuss random number generation from the conditional PDF via
rejection sampling in Section 4. We wrap up by presenting the
conclusions in Section 5.

2. Summary of concepts and notation

2.1. Stable distributions

A random vector 
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∈X d is stable if and only if
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equality in distribution [15,21]. One of the implications of (1) is

that the distribution of
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X is conserved under linear transforma-

tions up to location and scale. This is termed as the stability
property and is unique to this family of distributions [11,21]. From

(1), one notes that if
→
X is stable, then any permutation of

→
X is

stable as well. Further still, if
→

= [
→ →

]X X X,1

T

2

T
T such that 

→
∈X m

1 and


→

∈ −X d m
2 , then the marginal random vectors

→
X1 and

→
X2 are stable

too [21].
A univariate stable distribution is parameterized by four para-

meters, namely the characteristic exponent α ∈ ( ]0, 2 , the skew

parameter β ∈ [ − + ]1, 1 , the scale δ ∈ ( + ∞)0, and the location
μ ∈ ( − ∞ + ∞), [15,21]. In notational form, it is denoted by

α β δ μ( ), , , [11]. Stable distributions are generally heavy-tailed,
with the heaviness solely determined by α. As the latter increases,
the tails become increasingly lighter, ultimately converging to a
Gaussian distribution with mean μ and variance 2δ2, i.e., μ δ( ), 2 2
for α = 2 [15]. If

→
X is a stable random vector, then its elements are

stable random variables and have the same α.
A univariate SαS distribution is stable, but with β and μ set to

zero [11,21]. Consequently, its PDF symmetric about zero for any α.
We denote such distributions by α δ( ), . For α = 2,

δ δ( ) = ( )2, 0, 2
d 2  . Extending this to the multidimensional case,

we note that 
→

∈X d is SαS if it satisfies (1) and its PDF ( )→f xX is
symmetric, i.e.,

( ) = ( − ) ( )→ →f fx x , 2X X

where ∈x d is a sample outcome of
→
X . Moreover, all marginal

distributions of
→
X are SαS and each element of

→
X is SαS with the

same α [11,21].
One disadvantage of employing stable random variables is the

general lack of closed-form PDFs. Exceptions are the Gaussian
(α = 2) case and the Cauchy case (α = 1). Evaluating the PDF at a
point requires calling a numerical routine, which is computa-
tionally taxing [11,21]. This is more prominent in multivariate
cases. However, in some instances, certain conducive properties
may be exploited to reduce evaluation times. The αSG distribution
is such an example and is discussed next.

2.2. The αSG distribution

An αSG distribution is heavy-tailed SαS with the added con-
straint of being elliptical as well [14,21]. More precisely, the ran-

dom vector 
→

∈X d is αSG (α ≠ 2) if it can be expressed as

→
=

→
( )X A G , 3

where ∼ ( ( ( )) )α πα αA , 1, 2 cos , 0
2 4

2/ and Σ
→

∼ ( )G 0, is a d-dimen-
sional Gaussian random vector with the all-zero location vector 0

and covariance matrix Σ ∈ ×d d [14,21,11]. Moreover, A and
→
G are

independent. The matrix Σ is also called the shape matrix of
→
X [14].

The marginal distribution corresponding to any tuple of elements

in
→
X is also an αSG distribution and is therefore elliptic as well

[14]. Denoting the ith diagonal element of Σ as Σii, the distribution

of the ith element in
→
X is α Σ( ), ii .

Before we present the PDF of
→
X , it is pertinent to define the

standard isotropic αSG vector

Σ
→

=
→

=
→

( )−Y X A G , 4Y
1/2

where Σ
→

=
→

∼ ( )−G G 0 I,Y d
1/2  and Id is the ×d d identity matrix.

The lower-triangular matrix Σ1/2 arises from the Cholesky de-
composition of Σ, i.e., Σ Σ Σ= ( )1/2 1/2 T, as the latter is a symmetric

positive semi-definite matrix [18,22]. In turn, the PDF of
→
Y can be

written in terms of the PDF of the radial random variable

= ∥
→

∥ = (
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)R Y Y Y
T

1/2 [14]. The latter can be expressed as
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