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a b s t r a c t

This paper concerns message passing based approaches to sparse Bayesian learning (SBL) with a linear
model corrupted by additive white Gaussian noise with unknown variance. With the conventional factor
graph, mean field (MF) message passing based algorithms have been proposed in the literature. In this
work, instead of using the conventional factor graph, we modify the factor graph by adding some extra
hard constraints (the graph looks like being ‘stretched’), which enables the use of combined belief
propagation (BP) and MF message passing. We then propose a low complexity BP-MF SBL algorithm
based on which an approximate BP-MF SBL algorithm is also developed to further reduce the complexity.
Thanks to the use of BP, the BP-MF SBL algorithms show their merits compared with state-of-the-art MF
SBL algorithms: they deliver even better performance with much lower complexity compared with the
vector-form MF SBL algorithm and they significantly outperform the scalar-form MF SBL algorithm with
similar complexity.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Recently, compressed sensing [1,2] has received tremendous
attention and it has found wide applications in a large variety of
engineering areas, e.g. biomagnetic imaging, sparse channel esti-
mation, bandlimited extrapolation and spectral estimation, echo
cancellation and image restoration [3]. In compressed sensing, a
vector α ∈ ×L 1 which exhibits sparsity is estimated based on the
measurement vector ∈ ×y N 1 with the following model:

α ωΦ= + ( )y 1

where Φ ∈ ×N L is called dictionary matrix and ω represents an
additive white Gaussian noise (AWGN) vector with zero mean and
covariance matrix λ− I1 . In this work, we are particularly interested
in the case that the variance of the AWGN (or the precision
parameter λ) is unknown.

Besides convex [4] and greedy [5] methods, sparse Bayesian

learning (SBL) [6–8] is an alternative method of sparse signal es-
timation, which aims at finding a sparse maximum a posteriori
(MAP) estimate α α^ = ( | )α ypargmax of the vector α by specifying a
priori probability density function (pdf) α( )p . Instead of working
directly with a prior α( )p , SBL typically employs a two-layer (2-L)
hierarchical structure [9] that assumes a conditional prior pdf

α γ( | )p and a hyper-prior pdf γ( )p , so that ∫α α γ γ γ( ) = ( | ) ( )
γ

p p p d has a

sparsity-inducing nature. Most recently, SBL has been efficiently
implemented using belief propagation (BP) [10,11] and approx-
imate message passing [12,13]. However, these methods assume
that λ is known, which may not be true in many applications. This
work deals with message passing based approaches to SBL with
unknown λ.

Mean field (MF) based message passing [14–16], which is also
often referred to as variational message passing (VMP), has been
widely used for approximate Bayesian inference, especially for
exponential distributions. With 2-L or 3-L hierarchical prior
structures, Pedersen et al. proposed an MF SBL algorithm (with
unknown λ) [17], which was applied to sparse channel estimation
in OFDM. As the MF SBL algorithm deals with the sparse signal α in
a vector-form, matrix inversion is involved in each iteration and its
computational complexity is as high as ( ) L3 . To address the issue
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of complexity, a low complexity MF SBL algorithm [18] is then
proposed, where the inverse of a large matrix is decomposed into
a number of matrix inverses with smaller size. Flexible trade-off
between complexity and performance can be achieved by adjust-
ing the size of smaller matrices, which means that the reduction of
complexity comes at the cost of performance loss. Apparently, the
size of the smaller matrices can be set to be 1, so that the matrix
inverses are avoided and we call it scalar-form MF SBL algorithm.
Recently, the scalar-form MF SBL algorithm was used for channel
gain and delay estimation in [19]. We note that an efficient hy-
perprior α( )p with 2-L structure was proposed in [6], which per-
forms better than the 2-L and 3-L structures in [17].

Different from MF which supposes all the beliefs of variable
nodes are independent, BP considers the joint belief of variable
nodes neighboring a factor node and makes the most of their
correlation. BP, which may achieve exact Bayesian inference, is
efficient to deal with discrete probability models and linear
Gaussian models. However, BP may have a high complexity, when
especially dealing with models involving both discrete and con-
tinuous random variables. Recently, a unified message passing
framework was proposed in [20] where BP and MF are merged to
keep the merits of BP and MF while avoid their drawbacks.

In this work, a low complexity BP-MF SBL algorithm with a 2-L
hierarchical prior is proposed. Instead of using the conventional
factor graph shown in Fig. 1(a), we modify the factor graph by
adding a number of extra hard constraint factors as shown in Fig. 1
(b), i.e., the factor graph looks like being ‘stretched’. The hard
constraint factors seem redundant, which however facilitates the
use of BP in the graph, leading to considerable performance im-
provement. As we assume that the noise variance λ�1 is unknown,
MF can be used to tackle the exponential factors, while BP is used
to handle the hard constraint factors. As we factorize the signal α
in a scalar form, the developed BP-MF SBL algorithm avoids matrix
inversion and has a low complexity. Inspired by the derivation of
the generalized approximate message passing (GAMP) [21], we
further simplify the BP message passing by ignoring some minimal
terms and develop an approximate BP-MF SBL algorithm.

Numerical examples show that the proposed BP-MF SBL algo-
rithms provide even better mean-square-error (MSE) performance
with much lower complexity compared with the vector-form MF
SBL algorithm [17], and achieve noticeable MSE performance gain
with similar complexity compared with the scalar-form MF SBL
algorithm [18,19].

Notation: Boldface lowercase and uppercase letters denote vectors
and matrices, respectively. The expectation operator with respect to a
pdf g(x) is expressed by ∫ ∫( ) = ( ) ( ) ( ′) ′( )f x f x g x dx g x dx/g x , while

[ ] = | | − | |( )
( )

( )x x xvar g x
g x

g x
2 2 stands for the variance. The pdf of a

complex Gaussian distribution with mean μ and variance ν is re-
presented by μ ν( ) x; , . The relation ( ) = ( )f x cg x for some positive
constant c is written as ( ) ∝ ( )f x g x .

2. Factor graph model

The joint a posteriori pdf of α γ, and λ in (1) with a 2-L hier-
archical prior [9] can be factorized as

∏ ∏α γ αλ λ λ α γ γ( | ) ∝ ( ) ( ) ( ) ( )
( )λ α γyp f f f f, , , , ,
2n

y
l

l l ln l l

where α α αλ λ λΦ( ) ≜ ( | ) = ( )−f p y y, , ; ,y n n n
1

n
, with Φn being the n-

th row of matrix Φ, and λ( )λf denotes the prior of noise precision
parameter λ. The factor α γ( )αf ,l ll

denotes the conditional pdf

α γ α γ( | ) = ( )−p ; 0,l l l l
1 , which is chosen as a Gaussian prior of αl

and γ( )γf ll
represents a hyperprior γ γ η( ) = ( ϵ )p Ga ; ,l l

1 of the hy-

perparameter γl. The factorization in (2) can be visually depicted
on the factor graph [22] as shown in Fig. 1(a), which is similar to
those in [18,19]. We assume that λ is unknown, and MF can be
used to deal with factor nodes { ∀ ∈ [ ]}f n N, 1:yn

, which leads to

the scalar-form MF SBL algorithm [18]. In [17], the vector-form MF
SBL algorithm is derived based on a conventional factor graph,
where the vector α is treated as a single variable node.

To facilitate the use of both BP and MF, we modify the factor
graph in Fig. 1(a) by adding hard constraint factors

α αδ Φ{ ( ) = ( − ) ∀ ∈ [ ]}δf h h n N, , 1:n n nn
with a new variable vector

αΦ=h . Therefore, factor fyn
denotes the likelihood function

λ λ( | ) = ( )−p y h y h, ; ,n n n n
1 . The new factor graph, shown in Fig. 1

(b), looks like a stretched version of the graph in Fig. 1(a). In the
new graph, MF rules with fixed points equations can be used to
compute the messages for the exponential factors, while BP rules,
often yielding better performance, can be used to deal with the
hard constraint factors. The message computations and scheduling
are detailed in the following section.

3. BP-MF based SBL

In this section, with the combined BP-MF message update rule
[20], we detail the message computations and scheduling on the
factor graph shown in Fig. 1(b) to perform sparse signal estima-
tion. All the factors in Fig. 1(b) are represented by set , and it is
divided into two disjoint subsets, a BP subset and an MF subset,
which are denoted by = { ∀ }δ f n,BP n

and = ⧹  MF BP,

respectively.

Fig. 1. Two factor graph representations for the probabilistic model (2).

1 (· )a bGa ; , denotes a Gamma pdf with shape parameter a and rate parameter
b. Note that, as in [6], we use the Gamma prior for the parameter of precision,
rather than for variance [17].
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