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a b s t r a c t

A design methodology is presented for dynamical observers of hybrid systems with linear continuous-
time dynamics that reconstructs the complete state (discrete location and continuous state) from the
knowledge of the inputs and outputs of a hybrid plant. We then present the application of the theory to
the problem of on-line identification of the actual engaged gear for a car. The performance of the observer
was testedwith experimental data obtained in aMagneti Marelli Powertrain using an Opel Astra equipped
with a Diesel engine.

© 2013 Elsevier Ltd. All rights reserved.

1. Introduction

Hybrid systems are powerful abstractions for modeling com-
plex systems. Their theoretical properties have been the subject
of intense research. In addition, they have been used in a num-
ber of applications to provide models better reflecting the nature
of control problems such as the ones related to embedded system
design where discrete controls are routinely applied to continu-
ous processes. Because of their generality, deriving rigorous con-
troller synthesis procedures is often difficult. In many cases, we
must resort either to heuristics or to approximations. Even when
the structure of the hybrid problem is such that a controller can be
synthesized, strong assumptions have to be used. For example, the
use of hybrid formalisms to solve control problems in automotive
applications has been proposed and control laws derived (see Bal-
luchi, Di Benedetto, Pinello, & Sangiovanni-Vincentelli, 1999, Bal-
luchi, Di Benedetto, Pinello, Rossi, & Sangiovanni-Vincentelli, 1999,
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Balluchi et al., 2000, Balluchi, Benvenuti, Di Benedetto, Pinello, &
Sangiovanni-Vincentelli, 2000). These hybrid control algorithms
are based on full state feedback. However, in most cases, only par-
tial information about the state of the hybrid plant is available.
Hence, amethod for full state estimation is very important tomake
hybrid control algorithms really applicable.

A complete theory and a design methodology for observers for
mixed logical dynamical systems (MLD) was presented in Bempo-
rad, Ferrari-Trecate, and Morari (2000) (see also Ferrari-Trecate,
Mignone, & Morari, 2000). This approach is applicable to any hy-
brid system that can be approximated by an MLD system and,
consequently, it is a general powerful approach. However, even
if a hybrid system could be well approximated by an MLD sys-
tem, when ‘‘the observability horizon becomes large, solving the
optimization problem can become computationally intractable’’
(Bemporad et al. (2000)). In Fliess, Join, and Perruquetti (2008), al-
gebraic necessary and sufficient conditions for the distinguishabil-
ity of a linear switching system are offered. The authors propose
a numerically efficient procedure for reconstruction of the state
of the system as well as of switching signals and characterize the
‘‘bad’’ inputs to be avoided for which the continuous dynamics are
indistinguishable. In Pettersson (2006), switched linear systems
without reset and disturbances are considered. The author gives
a condition for the existence of an observer based on the existence
of a Lyapunov function that is common to the components of the
system. In Tanwani, Shim, and Liberzon (2011), observability for
the same class of systems is first geometrically characterized. An
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observer is synthesized that generates the state estimate that con-
verges to the actual state under persistent switching.

In this paper we present a design methodology for dynami-
cal observers of hybrid systems with linear continuous-time dy-
namics that reconstructs the complete state (discrete location and
continuous state) from the knowledge of the hybrid system input
and output signals. The hybrid systems considered here have re-
set states and disturbances and hence, are more general than the
ones addressed in Pettersson (2006); Tanwani et al. (2011). The
proposed hybrid observer consists of two parts: a location observer
that identifies the current location of the hybrid plant, and a con-
tinuous observer that produces an estimate of the evolution of the
continuous state of the hybrid plant. We first introduce the no-
tion of ‘‘current-location observable’’ hybrid systems, for which
the sequence of location switching can be identified by the loca-
tion observer from the observation of the discrete plant output,
without the need of any additional information from the evolu-
tion of the continuous part of the plant. For this class of hybrid
plants, the continuous observer can be designed by exploiting the
results on stability of switching systems given in [20] and [13]. We
then extend the previous result to the case of not current-location
observable hybrid systems by using some additional information
obtained from the processing of the continuous plant inputs and
outputs for the identification of the sequence of location
switchings.

The main contributions of this paper are the following:

• The proposed design methodology allows addressing observer
synthesis for hybrid systems with partial discrete information
on the current location, spanning the gap between the case
of complete knowledge of current location (i.e. the hybrid
plant produces as discrete output its current location), treated
for instance in Alessandri and Coletta (2001), and the case
of absence of any discrete output information (i.e. the hybrid
plant produces no discrete output), considered in Bemporad
et al. (2000), Ferrari-Trecate et al. (2000). This is an important
result for applications where, typically, the discrete actions
of the controller are known while no information regarding
autonomous switching in the plant is available.

• When the discrete output information is not sufficient to
identify the hybrid system location, i.e. the plant is not current-
location observable, the processing of the continuous plant
input/output signals in the signature generators is independent
from the continuous state observation process. This is newwith
respect to previous approaches (see e.g. Hofbaur & Williams,
2002 and Mosterman & Biswas, 1999) where the estimated
values of continuous state of the plant are used to supply the
missing information for the identification of the plant location.

• Exponential stabilization of the dynamics of the continuous
observation error is obtained by extending the results on
stabilization by Morse (1996) and Hespanha and Morse (1999)
to the class of switching systems with dwell-time and resets,
subject to bounded disturbances.

Theproposedhybrid-observer designmethodologywas applied
to an automotive control problem as presented earlier by the
authors in Balluchi, Benvenuti, Lemma, Sangiovanni-Vincentelli,
and Serra (2005) where the test case was described without the
theory that supports the methodology that has been considerably
upgraded in this paper. We considered the problem of on-line
identification of the actual engaged gear for a car. The relevance
of this problem is related to engine control strategies achieving
high performance and efficient emissions control which depend
critically on the knowledge of the engaged gear. The performance
of the observer was tested with experimental data obtained in
Magneti Marelli (a tier 1 automotive supplier) using an Opel Astra
equipped with a Diesel engine and a SeleSpeed AMT (Automatic

Manual Transmission). The signal on actual engaged gear provided
by the AMT control unit was used for the validation of the
identification algorithm. The specification given by the Magneti
Marelli Powertrain Division was to achieve correct identification
on a set of maneuvers with a delay of at most 250 msec, using an
implementation of the algorithm in discrete-time with a sampling
period of 12 msec.

2. Problem formulation

A hybrid system H is a collection

H = (Q , Σ, Γ , X,U,W , Y , Init, f , h, R, δ, ζ , φ) , (1)

where

• Q ,Σ andΓ are the finite sets of discrete state, input and output
variables, respectively;

• X ⊆ Rn, U ⊆ Rp, W ⊆ Rn and Y ⊆ Rp are the domains of
continuous state, input, state disturbance and output variables,
respectively;

• Init ⊆ Q × X is the set of admissible initial states;
• f : Q × X × U × W → TX and h : Q × X → Y are the vector

fields defining the dynamics of the continuous state and output
variables and TX is the tangent space to X;

• R : Q × Q × X → X describes the continuous state resets.
• δ : Q×Σ → 2Q and ζ : Q×Σ×Q → Γ


{ϵ} are, respectively,

the set-valued functions defining the dynamics of the discrete
state and output variables with ϵ being the null event;

• φ : Q × X → 2Σ


{ϵ} is the set-valued function specifying the
admissible events at each location q ∈ Q , for given values of the
continuous state x(t) ∈ X .

The finite set Σ of discrete inputs is composed by both internal
events, auto-generated by the hybrid system on the basis of the
values of the continuous state x(t), and exogenous input events,
whose enabling condition may or may not depend on x(t). The
null event ϵ is introduced to model different possible transition
conditions. For example, if φ(q, x) = {ϵ}, then no input event is
enabled for the given value of x while if φ(q, x) = {σ , ϵ}, then the
input eventσ is enabled.Moreover, ifφ(q, x) = {σ }, then the input
event σ is forced to occur and this can be used to model internal
events forced to occur.

In this paper, we consider living hybrid systems defined as
those which admit only executions that are non-Zeno and have
an infinite number of transitions (see Zhang, Johansson, Lygeros,
& Sastry, 2001). For example, viable hybrid systems with 0-
lag nonblocking control strategies and initial set Init equal to
the viability kernel, are living hybrid systems (see Deshpande
& Varaiya, 1994). Moreover, nonblocking hybrid systems with
minimum and maximum dwell-time (see De Santis, Di Benedetto,
& Pola, 2009) are also living hybrid systems. In the sequel we will
consider hybrid systems with no multiple transitions, i.e. hybrid
systems for which the times tk at which discrete transitions take
place are such that tk < tk+1.

An execution of a living hybrid systemwith nomultiple transitions
will involve continuous evolution as well as instantaneous
transitions (discrete evolution). In particular:

• (q(0), x(t0)) ∈ Init;
• (continuous evolution) for all k, when tk ≤ t < tk+1,

ẋ(t) = f (q(k), x(t), u(t), w(t))
y(t) = h (q(k), x(t))

and ϵ ∈ φ(q(k), x(t));
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