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a b s t r a c t

In this paper, a novel compressive data gathering with low-rank constraints is proposed for efficient data
gathering and accurate recovery in wireless sensor networks. The proposed method utilizes both the
low-rank feature of the data matrix by introducing the historical data and the sparsity feature based on
compressive sensing. A reconstruction algorithm based on the alternating direction method of multi-
pliers is described to efficiently solve the resultant optimization problem. Experimental results show the
proposed method can significantly improve the recovery accuracy compared with the state-of-the-art
methods.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Wireless sensor networks (WSNs) have been widely used in
many applications including military surveillance, environmental
monitoring, and healthcare monitoring. Typically, WSNs have one
sink and a number of sensor nodes monitoring physical phe-
nomena and communicating among themselves. The sensor nodes
sense, process and transmit the data to the sink for processing.
This systematic collection of sensed data, termed as data gather-
ing, is one of the key research issues in WSNs.

In order to reduce the number of data packets transmitted in
data gathering, a number of methods have been proposed in re-
cent years [1–7]. Most notably, the Compressive Data Gathering
(CDG) [2] was proposed to apply Compressed Sensing (CS) [8] to
sensor data gathering for large-scale WSNs by exploiting the
sparsity feature of the WSNs signal.

Although CDG can collect data and recovery in each sampling
time, the recovery accuracy is not satisfying. The method based on
CS and incorporating autoregressive (AR) model into the re-
construction (i.e., CDG_AR) [3] was also proposed. And a sequen-
tial CS method with sliding window processing (i.e., Seq-Prog-CS)
was proposed for reconstruction of spatially and temporally cor-
related sensor data [9]. Afterwards, another data gathering
methods were proposed to exploit the spatiotemporal correlation
in the form of low-rankness [4–6]. The method utilizing both the

low-rank and temporal sparsity feature was also proposed [7].
These low-rank based methods have been successfully used in
practical applications. However, in order to arrange the data into a
matrix and utilize the low-rank feature, the sensed data from a
number of sampling time slots were needed, which means these
low-rank based methods cannot be used in the real-time re-
quirement WSNs.

To improve the recovery accuracy of signal for the real-time
requirement WSNs, we proposed a new method utilizing both the
low-rank feature of the data matrix by introducing the historical
data and the sparsity feature of data from current time slot based
on CS.

2. Problem formulation

For simplicity of analysis, consider a WSN with n sensor nodes
and one sink. The time is divided into equal-sized time slots.
During each time slot, there are n sensor readings generated and
defined as an n-dimensional vector ∈ x n. As the data gathering
scheme described in CDG [2], instead of receiving the individual
sensor readings, the sink will be sent a few weighted sums of all
the readings, which is denoted as s. As a result, the measurement

Φ=s x , where Φ is an ×m n matrix. The matrix Φ maps x of size n
into s of size m, where m is much smaller than n. Let define
ρ = n m/ as the compression ratio. Since the sensor readings in the
same time slot should be sparse under a certain transform basis Ψ
[2], the problem to recover the original signal x from s can be
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expressed as solving an ℓ0 minimization problem:

Ψ Φ∥ ∥ = ( )x x smin s.t. 10

Unfortunately, the above ℓ0 minimization problem is NP-hard, and
hence solving it requires combinatorial optimization and is im-
practical. It is equivalent to use minimal ℓ1 norm representation
instead of the ℓ0 minimization in some sense. Furthermore, by
introducing a quadratic penalty term, the optimization problem
equation (1) can be converted into a corresponding unconstrained
formulation as:

λΦ Ψ^ = − + ( )x s x xarg min . 2x
2
2

1

3. The proposed method

3.1. Data reconstruction

As described in Section 2, the sensor readings in the current
time slot are defined as x. Let define the historical data from last p
time slots as ∈ ×H n p, where Hi j, denotes the sensor reading from
the ith node at last ( − + )p j 1 th time slot. In order to utilize the
spatiotemporal correlation often observed in WSNs data, let us
combine the historical data and the current data together to obtain
the whole data matrix:
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Since the data generated from neighboring sensors in continuous
time slots is often redundant and highly correlated [5], the data
matrix [ ]H x should have low-rank or approximately low-rank
property. As a result, the low-rank constraint can be utilized to
recover the signal, i.e., minimizing the rank of [ ]H x . However, it is
NP-hard to solve the optimization problem by minimizing the rank
of matrix directly [10,11]. Therefore, minimizing the nuclear norm
for the matrix is utilized as an alternative [12,13] which can be
represented as:

Φ∥[ ]∥ = ( )⁎H x x smin s.t. , 4

where the nuclear norm ∥·∥⁎ for the matrix is equal to the sum of
the singular values of a matrix. In this paper, we incorporate the
sparsity constraint by minimizing the ℓ1 norm and the low-rank
constraint by minimizing the nuclear norm in a single formula-
tion:

λ μΦ Ψ^ = − + + [ ] ( )⁎x s x x H xarg min , 5x
2
2

1

where λ and μ are the regularization parameters which control the
tradeoff between presenting sparsity feature of data from current
time slot, achieving low-rank of the whole data matrix, and fitting
to the data-fidelity term Φ−s x 2

2.

3.2. Optimization algorithm

Although the constraints imposed by Eq. (5) are appealing from
a modeling standpoint, the convex optimization problem with
nonsmooth regularization raises issue of computational com-
plexity. The alternating direction method of multipliers (ADMM)
[14] can be used due to its suitability for the large-scale and
convex optimization problem. Here, we develop an efficient and
robust ADMM-based reconstruction algorithm which is simple to
implement. The optimization equation in Eq. (5) can be converted
into the following equivalent constrained optimization problem

through variable splitting,

λ μΦ

Ψ

^ ^ ^ = − + +

= = [ ] ( )

⁎
⎧⎨⎩

⎫⎬⎭x y Z s x y Z

y x Z H x

, , arg min

s.t. , . 6

x y Z, ,
2
2

1

Then the augmented Lagrangian function for Eq. (6) can then be
written as:

λ α μ
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Here, a and B are two Lagrangian multipliers, α β >, 0 the penalty
parameters, ∥·∥F the Frobenius norm. Eq. (7) can be minimized by
the following alternating direction method:

= ( ) ( )+x x y Z a Barg min , , , , 8k k k k k
x

1

= ( )
( )+ +y x y aarg min , ,
9k k k

y
1 1

= ( ) ( )+ +Z x Z Barg min , , 10k k k
Z

1 1

α Ψ= + ( − ) ( )+ + +a a y x 11k k k k1 1 1

β= + ( − [ ]) ( )+ + +B B Z H x 12k k k k1 1 1

In practical implementation, y0 and a0 were initialized with
zeros vectors, and Z0 and B0 were all initialized with zeros ma-
trices. The general solutions to the subproblems of Eqs. (8)–(10)
are described in Appendix A. The algorithm is terminated when

−+x x x/k k k1 2 2 is smaller than a predefined tolerance para-
meter, or k exceeds a maximum number of iterations. It is note-
worthy that for the convex optimization problem in Eq. (5), the
ADMM algorithm is guaranteed to have global convergence from
any initializations.

4. Simulation

In order to evaluate the effectiveness of the proposed method
for data reconstruction in WSNs, we performed the data collection
based on CS and reconstruction experiments with real WSN data.

4.1. Experimental environments

The real WSN data used for experiments was collected from 54
sensors deployed in the Intel Berkeley Research lab [15], where
four types of information (e.g., humidity, temperature, light and
voltage) were monitored and collected once every 31 s. To im-
plement the proposed method, the compressive data gathering
scheme [2] was utilized for the data gathering in WSNs. Specifi-
cally, during each time slot, each node calculated the weighted
measurement of its reading, and the sink received the sum of
weighted measurements. Mathematically, the measurement

Φ=s x was generated, where Φ was a normally distributed ran-
dom matrix in our simulation.

The size of the measurement s is ρ= ⌊ ⌋m n/ , where ρ is the
compression ratio. The CDG [2], CDG_AR [3], Seq-Prog-CS [9], and
the proposed method with different p were utilized to reconstruct
the signal from the measurement. The orthonormal Fourier matrix
was selected as the transform basis Ψ in CDG. CDG_AR, and the
proposed method. For Seq-Prog-CS, the discrete Fourier and cosine
transform were utilized to form the Kronecker sparsifying basis.
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