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Optimum time delay estimation for complex-valued stationary signals
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a b s t r a c t

The problem of finding the time delay between complex-valued sequences received at two spatially
separated sensors is addressed. Considering white signal and noise processes, three delay estimation
algorithms based on the minimum mean square error criterion are devised. Their asymptotic mean and
mean square error expressions are derived which show that all are unbiased estimators with perfor-
mance approaching the Cramér–Rao lower bound. Numerical results are included to validate the theo-
retical development and contrast the three techniques.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Time delay estimation (TDE) between signals received at an
array of sensors has been an important research topic because of
its diverse applications in areas including radar, sonar, commu-
nications, acoustics, seismology, optics and biomedical engineer-
ing [1–7]. Although the general setup is to find the delays when
the sensor number is at least 3 [4,8,9], we focus on the funda-
mental problem in this paper, namely, estimating the time-dif-
ference-of-arrival (TDOA) between two received signals. Con-
sidering the passive TDE signal model [1], the discrete-time ob-
servations can be expressed as:
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where [ ]s n is the unknown signal-of-interest, α is the attenuation
constant and ∈ D is the TDOA, while [ ]q n1 and [ ]q n2 are additive
zero-mean noise processes. The task is to find D using the N
samples of [ ]r n1 and [ ]r n2 received at two separated sensors.

When [ ]s n is deterministic, such as a sinusoid [3] or chirp [5],
the Fourier transform based approach can provide optimum delay
estimation performance in the sense that its mean square error
(MSE) attains the Cramér–Rao lower bound (CRLB) at sufficiently
high signal-to-noise ratio (SNR) conditions. On the other hand, for
random [ ]s n , the standard solutions include locating the maximum

of the cross-correlation function between [ ]r n1 and [ ]r n2 [2,10], and
delay modeling via a finite impulse response (FIR) filter [11–13].
Recently, the FIR filtering methodology has also been extended to
handle the case when [ ]q n1 and [ ]q n2 are impulsive processes with
the use of robust techniques [7,14]. Nevertheless, TDE for com-
plex-valued signals is less addressed in the literature. In [15], de-
terministic real-valued signals are converted to the complex ana-
lytic form prior to the delay estimation process, while [16] con-
siders noncircular observations. To the best of our knowledge,
existing time delay estimation algorithms for complex signals
cannot achieve the highest estimation accuracy. In this work, we
contribute to the development of optimum TDE algorithms for
white complex-valued data.

The rest of this paper is organized as follows. Under the um-
brella of the minimum mean square error (MMSE) framework, we
present three TDOA estimation approaches in Section 2. Mean and
MSE as well as computational complexity of the proposed meth-
ods are studied in Section 2.1. In particular, the MSE performance
of the proposed approaches can attain the CRLB asymptotically.
Numerical examples for evaluation and validation are given in
Section 4. Finally, we conclude our work in Section 5.

2. Algorithm development

The MMSE criterion for TDE is to minimize the following cost
function:

α α( ˜ ˜ ) = {| [ ] − ˜ [ − ˜]| } ( )J D r n r n D, , 2MMSE 2 1
2

where α̃ and D̃ are the optimization variables for α and D,
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respectively, and  represents the expectation operator. Assuming
that [ ]s n , [ ]q n1 and [ ]q n2 are independent zero-mean white com-

plex-valued processes with variances ss
2, σq

2
1
and σq

2
2
, respectively,

the MMSE estimates of α and D, denoted by α̂ and D̂, are:
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implying that unbiased delay estimation is achieved.
For simplicity but without loss of generality, we assume α ∈ .

Expanding α( ˜ ˜ )J D,MMSE and noting that σ σ{| [ − ˜]| } = + r n D s q1
2 2 2

1
, it is

seen that D̂ can also be obtained from:
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where R denotes the real part and * is the conjugate operator. Eq.
(4) corresponds to the cross-correlation method as ( ˜ ) ∈ R D2,1

measures the similarity between [ ]r n2 and [ − ˜]r n D1 . To produce
[ − ˜]r n D1 from [ ]r n1 , we make use of the interpolation formula [11]:

∑ ∑[ − ] = [ − ] ( − ) ≈ [ − ] ( − )
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where π π( ) = ( ) ( )v v vsinc sin / is the sinc function. Note that > | |P D
should be chosen sufficiently large to reduce the delay modeling
error [12].

2.1. D̂1

Nevertheless, direct implementation of (4) requires varying D̃

to search for the peak in ^ ( ˜ )R D2,1 , which is the estimate of ( ˜ )R D2,1
based on finite number of samples. To avoid doing so, an alter-
native is to employ ( ) = − − + …R p p P P P, , 1, ,2,1 , which is easily
computed. Using (5), we straightforwardly obtain:

ασ( ) = ( − ) = − − + … ( )R p p D p P P P2 sinc , , 1, , . 6s2,1
2

In practice, ( )R p2,1 is replaced by its estimate using finite samples
[9]:
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According to [12], the TDOA estimate based on sinc interpolation

of { ^ ( )}R p2,1 , denoted by D̂1, is:
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2.2. D̂2

Ideally, replacing ^ ( )R p2,1 by ( )R p2,1 of (6) and considering → ∞P

in (8), we can easily obtain ^ =D D1 . However, D̂1 is biased for finite
P [12]. To circumvent the delay bias, we utilize (6) and propose a
least squares (LS) fit which minimizes the following cost function
[13]:
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where γ̃ is the optimization variable for γ ασ= 2 s
2. As γ is easily

solved with a closed-form expression from (9), we can remove γ̃ in
the LS cost function. As a result, the corresponding TDOA estimate,

denoted by D̂2, is calculated as:
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2.3. D̂3

As it is not practical to generate a perfect [ − ˜]r n D1 , our second
approach is to model α̃ [ − ˜]r n D1 in (2) using an FIR filter with

transfer function ( ) = ∑ =−
−W z w zp P

P
p

p [11–13]. Using (5), the MMSE

solution is then derived as

∑
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With only finite number of observations, sample correlation
functions in the form of (7) are used in (11), which means that the
MMSE criterion is replaced by the LS regression. The LS estimate of
wp, denoted by ŵp, is then computed from:
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where ^ ( )R p1,1 denotes the modified auto-correlation function of
[ ]r n1 and its definition aligns with (4). Following (9)–(10), which

corresponds to a second LS regression step, the resultant delay

estimate, denoted by D̂3, is:
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It is worth mentioning that all the derivations are valid for
signals sampled at or over the Nyquist rate because the develop-
ment is based on (5).
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