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a b s t r a c t

To improve the precision of frequency estimation, a phase correction autocorrelation-based frequency
estimation method for sinusoidal signal is proposed. Firstly, a phase correction autocorrelation is de-
veloped to reduce the effect of non-half period sampling signal on autocorrelation. Secondly, reference
signal is generated according to phase correction autocorrelation signal. Finally, an error function be-
tween phase correction autocorrelation signal and reference signal is constructed and frequency esti-
mation is obtained by calculating the minimum of error function. To demonstrate the superiority of the
proposed method, computational complexity is analyzed, simulations and experiments are performed.
Theoretical analysis and simulations demonstrate that the proposed method reduces the influence of
non- half period sampling signal and has better frequency estimation performance than the interpolated
DFT method, the modified covariance method for correlation, the two-stage autocorrelation method and
the expanded autocorrelation method. The measurement experiments of LFMCW radars validate the
effectiveness and superiority of the proposed method in practice.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

Frequency estimation of sinusoidal signal has received much
attention in the literature because of its wide application in nu-
merous engineering applications, such as radar, sonar, commu-
nication, power systems, measurement and instrumentation [1–5].
For example, the measurement accuracy of linear frequency
modulation continuous wave (LFMCW) radars depends on fre-
quency estimation of LFMCW radar signal directly. Therefore, ac-
curate frequency estimation of real sinusoid is of great significance
for practical engineering applications.

To obtain frequency estimation of sinusoidal signal, many di-
gital methods are presented during the last decades. The existing
frequency estimation methods are mainly divided into two cate-
gories: the frequency-domain methods and the time-domain
methods. The frequency-domain methods [6,7] transform sampled
signal from time domain to frequency domain by discrete Fourier
transform(DFT) and obtain frequency estimation through discrete
spectrum correcting of DFT coefficients. The methods are compu-
tationally simple and have good anti-interference performance.
However, the frequency-domain methods suffering from spectral
leakage have difficulty in obtaining unbiased frequency estimation

when dealing with real sinusoid with a finite signal length [8]. The
time-domain methods obtain estimated frequency by means of
autocorrelation, linear prediction and so on. As one of the time-
domain methods, the Pisarenko harmonic decomposition (PHD)
method [9,10] exploits the eigenstructure of sampled signal′s
covariance matrix to gain its estimated frequency. Despite it is
easily implemented, the PHD method is sensitive to the noise [11],
which limits its application in practice. To improve the estimation
performance of the PHD method, the modified Pisarenko harmo-
nic decomposition (MPHD) method [11] and the reformulation of
Pisarenko harmonic decomposition (RPHD) method [12] are de-
veloped. Compared with the PHD method, the RPHD and MPHD
methods have better estimation performance. To improve the anti-
interference performance of the PHD methods, the modified cov-
ariance method for correlation [13,14] (MCC) and the expanded
autocorrelation(EA) method [15] make full use of multiple auto-
correlation signals to calculate frequency estimation. The MCC and
EA methods improve the frequency estimation precision at low
SNR effectively. But their performance shows no improvement at
median or high SNR corresponding to the increasing SNR, which
results from non-half period sampling of sinusoidal signal. The
two-stage autocorrelation (TSA) method [16] gains frequency es-
timation by means of two-stage autocorrelation of sampled signal.
The TSA method achieves asymptotically unbiased frequency es-
timation and improves its estimation performance, but it involves
more extensive computational complexity and has relatively poor
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performance at low SNR, which is attributed to two-stage auto-
correlation of sampled signal [15].

To improve the frequency estimation performance of real si-
nusoid, a phase correction autocorrelation-based frequency esti-
mation method for sinusoidal signal is developed. The rest of the
paper is organized as follows. In Section 2, the key idea of the
proposed method is introduced. The phase correction auto-
correlation is devised to reduce the influence of non-half period
sampling of sinusoidal signal and the error function reflecting the
initial phase and frequency matching degree between auto-
correlation signal and reference signal is constructed. Besides, the
basic step of this method is given and computer simulations are
implemented to demonstrate the superiority of phase correction
autocorrelation. Computational complexity is analyzed in Section
3. To assess the frequency estimation performance of the proposed
method, simulations and field experiments are conducted in Sec-
tion 4 by comparing with the interpolated DFT (IDFT), MCC, TSA
and EA methods and the Cramér-Rao lower bound (CRLB). Finally,
conclusions are outlined in Section 5.

2. Method development

The discrete-time signal model for real single-tone sinusoidal
signal with Nsamples can described as

( ) = ( ) + ( ) = ⋯ ( )x n s n z n n N, 1, 2 1

where ω θ( ) = ( + )s n a ncos is noise-free sinusoidal signal, the
>a 0, ω π∈ ( )0, and )θ π∈ ⎡⎣ 0, 2 are unknown but deterministic

constants which represent the sinusoidal magnitude, frequency,
and initial phase, respectively. ( )z n is zero-mean, white Gaussian
noise with variance σ2.

To obtain frequency estimation of sampled signal, the kth au-
tocorrelation signal of sampled signal is calculated as follows:
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Due to the fact that the noise at different times is uncorrelated
and the noise and noise-free signal are uncorrelated, the ex-
pectation of ( )R ko is
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Therefore, the noise is neglected when N is sufficiently large.
It is evident in Eq. (4) that when −N k, the length of two

signals ( )x n and ( + )x n k ( = ⋯ −n N k1, 2 ) used to calculate ( )R ko

meets the requirement of ω π( − ) =N k q1 ( q1 is an integer), ε ( )ko

equals zero. Therefore, when signal length of ( )x n
( = ⋯ −n N k1, 2 ), −N k satisfies the requirement of ω π( − ) =N k q1
(q1 is an integer), the signal ( )x n is called as half period sampling
signal, that is, ( )x n is of half period sampling. On the contrary, ( )x n
is called as non-half period sampling signal, that is, ( )x n is of non-
half period sampling.

When ε ( )ko equals zero, ( )R ko can be simplified as

ω( ) = ( − ) ( ) = ⋯ = − ( )R k
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At this time, the initial phase of ( )R ko is zero and the phase of
( )R ko is a linear function of unknown frequency ω. When ε ( )ko does

not equal zero, there is a deviation between ( )R ko and

( ) ω− ( )N k kcosa
2

2
. At the time, the initial phase of ( )R ko is not zero

and the phase of ( )R ko is a combination of unknown frequency ω
and initial phase θ , which results in the difficulty of obtaining
accurate frequency estimation based on autocorrelation signal

( )R ko .
To suppress the effect of non-half period sampling on auto-

correlation, ( )R k is calculated as follows:
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The expectation of ( )R k is
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To reduce the effect of ε( )k on autocorrelation and frequency
estimation, a phase correction factor ε′( )k is designed according to
(Eqs. (7) and 8).
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There is
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Similar to ( )v k , ′( )v k approximately equals zero when N is
sufficiently large. Thus, ′( )v k is neglected on the condition.

Due to ε ε′( ) = ( )⎡⎣ ⎤⎦E k k , substituting ε( )k with ε′( )k in Eq. (7) and
neglecting the influence of ( )v k and ′( )v k yields
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According to Eq. (13), Eq. (14) is obtained.
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