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In the low rank matrix approximation problem, the well known nuclear norm minimization (NNM)
problem plays a crucial role and attracts significant interests in recent years. In NNM the regularization
parameter A plays a decisive part, A controls both the rank of the solution and the extent of the
thresholding. However, it is hard for a single A to balance the two issuses, and meanwhile the solving
method calls singular value decomposition (SVD), of which the computational complexity is im-

practicable when the scale of the problem becomes large. This paper presents a rank constrained nuclear
norm minimization (RNNM) method, in which the rank and the extent of thresholding are controlled
separately by an added parameter k. More importantly, by proving its equivalence with an unconstrained
bi-convex optimization problem RNNM can be solved in SVD free manner. In this paper, a SOR (Suc-
cessive Over Relaxation) algorithm is designed for the equivalent bi-convex problem and its convergence
is proved. We show that RNNM has a unique global optimal solution although being non-convex. We
explicitly analyse the structure of the solution for the bi-convex problem and show some interesting
properties. Finally, we verify the effectiveness of RNNM in image denoising. Experimental results show
that the proposed solving method works faster than SVD based method. Thanks to the well balance of
rank and thresholding, RNNM achieves superior results than the state-of-the-art methods in image
denoising such as BM3D, SAIST in terms of both quantity measure and visual quality.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction mxin rank(X)

2
Low rank approximation aims at approximating the underlying st IX- Y <e @

low rank matrix from its degraded one, and has been widely used
in image processing, computer vision and pattern recognition. For
instance, the texture of an image is believed to be of low rank due
to its reduplication [27]. Therefore, low rank approximation can be
used for cartoon texture decomposition. Meanwhile it can also be
used in background foreground extraction [31,25] and multiple
category classification [1]. It is observed that the matrix con-
structed by similar image patches is of low rank [ 18], thus low rank
approximation can be used as an efficient tool for low level vision
problems such as image denoising [18,11,17,34]| and video de-
noising [19]. In recent years, plenty of works have been done on
the theorem and algorithm of low rank approximation
[28,15,16,4,21,13].

The original low rank approximation formulated as follows is a
non-convex problem:
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It is not easy to handle (1). To make the problem practicable, a
large amount of works have been done on discussing the following
convex relaxation problem:

min  [[X]l.
X
sStLIX-Y[E<e @)

It has been proved that solving the convex nuclear norm mini-
mization problem leads to a near optimal low-rank solution [7]. By
casting the constrained optimization into an unconstrained one,
(2) is equivalent to problem (3):

min ¥ - XII + Xk 5
where A is a positive constant. In the early stage, [16] proved that
(3) can be solved using SDP(semi-definite programming), but it is
only effective in solving problems of small scale. Recently, [4]
proved that problem (3) can be solved easily by singular value
thresholding. That is, the optimal solution of (3) can be obtained
by X* = US,(Z)V", where Y = UsV" is the SVD of Y and §;(%) is
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the soft-thresholding function. The work of [4]| provided closed
form solution of problem (3), since then nuclear norm minimiza-
tion (NNM) shows its power in low rank approximation and has
been widely used in matrix completion [6] and low rank re-
presentation [20]. Albeit its success, for NNM there still has certain
limitations .

For NNM the regularization parameter A plays a decisive part,
which means it controls both the rank of the solution and the
extent of thresholding on singular values. However, in many ap-
plications (such as image denoising) it is hard for a single A to
balance the two issues. Large A lowers the rank of the solution but
over-penalties the large singular values, small A preserves the
large singular values but increases the rank. In recent years a great
quantity of works have been done on discussing the balance of
rank and thresholding, therefore to avoid the over-penalty. Zhang
et al. [32] proposed a Truncated Nuclear Norm Regularization
(TNNR) method, in which it keeps the large singular values and
thresholds on some specific small singular values. TNNR is not
flexible enough since it makes a binary decision on whether to
regularize a specific singular value or not. Wen. et al. proposed a
low rank factorization model [30] which restricts the rank of the
solution by a dynamically rectified parameter but with no reg-
ularization on large singular values. In real applications such as
image denoising the large singular values are also contaminated
by noise, it is unreasonable to keep the large singular values un-
touched. Gu et al. [18] proposed a weighted nuclear norm mini-
mization method (WNNM) to balance the rank and thresholding,
and achieves competitive results, but it is not easy to estimate an
appropriate weight for WNNM. Also large amounts of non-convex
method was proposed in [22].

Apart from the over-penalty problem, the solving method of all
these singular value regularized methods call SVD operation, and
the computational complexity of SVD is impracticable when the
problem scale becomes large. To reduce the computational com-
plexity, Cai [5] designed fast singular value thresholding method
using the dual of SVT. Since in their work, the input matrix should
be preprocessed by complete orthogonal decomposition which
requires O(mn, min (m, n)), so the reduction of computational
complexity is still limited. The work of [30] using matrix factor-
ization to approximate low rank. In other thread of works, Mu
et al. [25] proposed a compressed optimization by random pro-
jection. Ma et al. [23] using a linear-time approximate SVD [14].
However, these methods are unstable. Although these works avoid
SVD, they cannot solve the over-penalty problem. To the best of
our knowledge, there are few works have been done on solving
the over-penalty problem and avoiding SVD simultaneously.

On account of this, in this paper, we propose a rank constrained
nuclear norm minimization (RNNM) method. In RNNM, the rank
and the extent of thresholding are controlled separately by an
added parameter k. k restricts the rank and A controls the
thresholding. Benefiting from the introduced parameter k, RNNM
well balances the rank and thresholding, refrains from over-pen-
alty of NNM. At the same time, we prove that RNNM is equivalent
to a bi-convex matrix factorization problem, which can be solved
in SVD free manner. We prove that, RNNM and its equivalent bi-
convex matrix factorization form, although being non-convex, can
guarantee a global optimal solution. In addition, the SOR (suc-
cessive over relaxed) algorithm is designed for the bi-convex form
RNNM problem, and its convergence analysis is presented. We
show that the solution of the equivalent bi-convex form RNNM
model has some nice properties, which may be profitable for some
specific problems. To test the effectiveness of RNNM, we apply
RNNM for image denoising, by utilizing the nonlocal self-simila-
rities priori of images, the RNNM model achieves satisfactory de-
noising results. Meanwhile, we compared the computational time
of RNNM and SVD based low rank models. The experimental

results verified the effectiveness of RNNM, that is RNNM indeed
solve the over-penalty problem and meanwhile save computa-
tional time.

The contribution of this paper is three folds.

e We propose the RNNM model to solve the over-penalty pro-
blem of standard NNM.

® A SVD free algorithm is designed for RNNM, and convergence
analysis is given.

® We apply RNNM for image denoising, and meanwhile we verify
the computational efficiency of RNNM.

The rest of this paper is organized as follows: in Section 2, we
exhibit our RNNM model and prove that it is equivalent to a bi-
convex factorization model. Meanwhile, we prove that the bi-
convex factorization model can be solved in SVD free manner.
Furthermore, we give specific analysis of the bi-convex form
RNNM and show some useful properties of its solution. In Section
3, we present a SOR algorithm for bi-convex form RNNM and
prove its convergence. In Section 4, we adopt the proposed RNNM
for image denoising to demonstrate the effectiveness of our
method. In Section 5, we give experimental results to show that
RNNM works faster than SVD based low rank approximation, and
also show that RNNM performs excellent in image denoising.
Conclusions are given in Section 6.

Notations: For a matrix P € R™", we assume m > n. Let P; and
P; denote the ith row and the jth column of P, |IP|lr the Frobenius
norm and |IP|l, the nuclear norm. ||| denotes Euclidean norm of a
vector and (., -) denotes the inner product of two vectors with
matching dimension. Denote by r the rank of the data matrix Y.

2. Rank constrained nuclear norm minimization

As stated in Section 1, NNM uses a single A to balance the rank
and threshold. Soft-thresholding uses a large A results in a low
rank solution, meanwhile it penalizes on large singular values too
much. On contrary, soft-thresholding uses small A to preserve the
large singular values; however it cannot come at a low rank so-
lution. To settle this problem, we introduce a new parameter k in
the standard NNM and cast the problem to a constrained non-
convex optimization problem RNNM as

.1
—|lY = X|2 + AlIX
rr;;nzll Il + 21X
s. t. rank(X) < k )

Generally, the parameter k is smaller than the rank of Y.

Problem (4) is non-convex constrained optimization problem
which is absolutely different to the convex unconstrained NNM
(3). We give a theorem to show that RNNM has unique global
optimal solution-the rank restricted soft thresholding (RRST) as
shown in Fig. 1.

Theorem 1. VY € R™", denote by Y = UzV' the SVD of it. For
RNNM in (4) its solution X is unique and can be written as
X = USk,; Z) VT, where S,M(Z) is a rank restricted soft-thresholding
(RRST) operator

S,M(z)“ = {

max(Zj - 4,0), i=1+k
0, 0.w

Therefore, the rank and extent of thresholding are treated se-
parately. Fig. 1 gives an illustration of the RRST operator as for-
mulated in Theorem 1, and makes comparison with the traditional
soft-thresholding and hard-thresholding operators. In Fig. 1 (left),
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