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a b s t r a c t

Tracking of nonstationary narrowband signals is often accomplished using algorithms called adaptive
notch filters (ANFs). Generalized adaptive notch smoothers (GANSs) extend the concepts of adaptive
notch filtering in two directions. Firstly, they are designed to estimate coefficients of nonstationary quasi-
periodic systems, rather than signals. Secondly, they employ noncausal processing, which greatly im-
proves their accuracy and can be applied whenever additional delay can be tolerated. The paper develops
a novel performance assessment mechanism for GANS. It allows one to evaluate tracking accuracy of the
smoother without prior knowledge of the true values of the system's frequency or coefficients. The
extension can be employed to build a parallel bank of filters, which automatically chooses the one which
is best matched to unknown and possibly time-varying tracking conditions.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

A broad spectrum of applications involves estimation of linear-
in-parameters’ systems whose coefficients are time varying, i.e.
systems governed by

ϕ θ( ) = ( ) ( ) + ( ) ( )y t t t v t 1T

where = … − …t , 1, 0, 1, denotes discrete, dimensionless time, y
(t) is the system output, v(t) is a wideband measurement noise,
ϕ ϕ ϕ ϕ( ) = [ ( ) ( ) … ( )]t t t tn1 2

T is the regression vector and
θ θ θ θ( ) = [ ( ) ( ) ( )]t t t t... n1 2

T denotes the vector of system
coefficients.

Depending on the underlying source of nonstationarity, the
system of interest may be loosely classified as being either a
‘slowly’ or a ‘rapidly’ time varying one [1]. Obviously, the border
between the two cases is rather blurry, to say the least. Quite often
the answer to the question whether or not one is facing the rapid
variation case depends on the required estimation accuracy. The
case of slow variations can usually be solved using standard esti-
mation tools, such as the recursive least squares (RLS) or the least
mean squares (LMS) algorithms, among others [2]. The second
class of problems arises when these tools can no longer deliver
estimates of sufficient accuracy. Solutions to this class of problems
typically rely on additional knowledge, in the form of a model of
the system coefficients’ behavior.

The case of particular interest to this paper is when the

coefficient vector θ ( )t varies in an approximately complex ex-
ponential manner

θ β( ) = ( ) ( )∑ ω τ( )τ=t t e , 2j
t

1

where β β β β( ) = [ ( ) ( ) ( )]t t t t... n1 2
T, denotes slowly time-varying

complex valued ‘amplitude’ vector and ω ( )t is the slowly time-
varying (real-valued) instantaneous frequency. Note that the sys-
tem (1)–(2) can be more accurately classified as quasi-periodic –

since both β ( )t and ω ( )t are time-varying quantities, the behavior
of θ ( )t can be approximated using stationary complex sinusoids
(cisoids) only in a short time frame.

The importance of quasi-periodic case stems from the fact that
it is encountered in numerous RF applications where Doppler ef-
fect takes place [3–7]. In these applications y(t) typically re-
presents the complex-valued baseband received signal, θ ( )t is
made up of past samples of the transmitted waveform, while β ( )t
and ω ( )t are the scatterer's ‘impulse response’ and Doppler fre-
quency, respectively. Note that, since spatial relationships between
the transmitter, the reflectors, and the receiver change due to their
relative movement, β ( )t and ω ( )t are indeed time varying quan-
tities. On the other hand, the time frame in which these changes
become significant spans tens or even hundreds of periods of their
movement-induced complex sinusoidal Doppler terms, which
means that behavior of system coefficients is well modeled by Eq.
(2).

The problem of estimating coefficients of the system (1)–(2) is
sometimes called generalized adaptive notch filtering problem,
and the algorithm designed for this task is referred to as
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generalized adaptive notch filters (GANFs). To explain why GANFs
can be regarded as extension of classical adaptive notch filters
(ANFs) [8–12], consider the case when ϕ ϕ( ) = ( ) ≡t t 1. Under such
restriction the task of tracking coefficients of the system (1)–(2) is
equivalent to tracking a nonstationary complex sinusoid

β( ) = ( ) ( )∑ ω ( )τ=s t t e 3j t
t

1

embedded in wideband noise

( ) = ( ) + ( ) ( )y t s t v t , 4

which is the backbone of the ANF problem. Practical applications
which fall under the scope of (3) include, among others, filtering
power signal from electrocardiogram (ECG) recordings [13,14],
tracking harmonic currents in power applications [15–17], fault
detection [18] or active control of narrowband acoustic noise [19–
21].

Both ANFs and GANFs are causal algorithms – to work out their
estimates, they employ only data from the past and the current
moment in time. However, in many applications one is allowed to
make use of future data as well. Such a situation can occur, e.g.
when the data was prerecorded in advance or when additional
processing delay can be tolerated. In cases like these one can
employ noncausal extensions of ANFs and GANFs, called notch
smoothers (ANSs and GANSs, respectively). Such algorithms can
offer substantially better performance than their causal counter-
parts, both in terms of frequency and system (signal) tracking
accuracy – see [22,23] for more details.

These benefits are, unfortunately, not free – GANSs, being more
complex than GANFs, require more skill from their user. The paper
addresses these difficulties and proposes two useful improve-
ments. First, an on-line performance assessment mechanism is
developed, which allows one to evaluate frequency tracking ac-
curacy of the GANS without prior knowledge of the true frequency
trajectory. This design is far from trivial, because smoothers, being
noncausal devices, can easily create an illusion of good perfor-
mance. Second, on the basis of the proposed assessment me-
chanism, an automatic optimization mechanism is constructed.
The final solution employs the parallel approach – it runs a bank of
smoothers predesigned to match different tracking conditions and
selects the one with (locally) best accuracy.

The paper is organized as follows. Section 2 revises the GANS
algorithm of interest in this study. Section 3 develops and analyzes
an automatic performance assessment mechanism. Section 4 dis-
cusses implementation-related issues. Section 5 gathers all the
partial results derived in Sections 2–4 and proposes the self-op-
timizing variant of the GANS. Section 6 presents simulation results
which validate the analytical part of the paper. Section 7
concludes.

2. Generalized adaptive notch smoothing revised

2.1. Basic generalized adaptive notch smoother

Suppose that the sequence of regression vectors ϕ( )t is a wide-
sense stationary, persistently exciting random process with known
correlation matrix ϕ ϕΦ = [ ( ) ( )]⁎ t tE T . The GANS proposed in [24] is
a multi-step algorithm which consists of four parts (see Fig. 1 for
an outline of the algorithm and signals appearing at output of
different stages). First, the so-called pilot GANF is employed
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where n denotes complex conjugation, T and H stand for trans-

position and conjugate transposition, respectively, ^ ( )f t is a phase
term, ϵ( )t is a prediction error; ω̂ ( )t and α̂ ( )t denote the estimates
of instantaneous frequency and frequency rate
α ω ω[ ( ) = ( + ) − ( )]t t t1 respectively. The parameters μ > 0, γ >ω 0,

γ >α 0, γ γ μ⪡ ⪡α ω are small adaptation gains which govern rates of
amplitude, frequency, and frequency rate adaptation, respectively.

Even though the pilot GANF includes tracking of system coef-
ficients, its actual purpose is to work out frequency estimates, ω̂ ( )t .
These estimates are, in fact, preliminary and undergo further
processing to deliver more accurate ones.

This improvement is achieved by making use of available ‘fu-
ture’ information. Smoothing of frequency estimates is performed
using the following cascade of simple linear filters, where the
second one runs in reversed time

ω ω ω¯ ( ) = − ¯ ( − ) + ^ ( − )t c t b t1 11 1

ω ω ω ω γ ω˜( ) = − ˜( + ) − ˜( + ) − ˜( + ) + ¯ ( + ) ( )αt f t f t f t t1 2 3 1 . 61 2 3

The coefficients appearing in the above two recursive equations
depend on adaptation gains of the pilot filter in the following way:
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The final two steps are amplitude filtering, performed using the
so-called frequency guided GANF,
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followed with amplitude smoothing
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Fig. 1. GANS algorithm and signals appearing at outputs of consecutive stages of
processing.
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